We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two studies were conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to determine the optimal granular ammonium sulfate (AMS) rate and application timing for pyroxasulfone-coated AMS. In the rate study, AMS rates included 161, 214, 267, 321, 374, 428, and 481 kg ha-1, equivalent to 34, 45, 56, 67, 79, 90, and 101 kg N ha-1, respectively. All rates were coated with pyroxasulfone at 118 g ai ha-1 and top-dressed onto 5- to 7-leaf cotton. In the timing study, pyroxasulfone (118 g ai ha-1) was coated on AMS and top-dressed at 321 kg ha-1 (67 kg N ha-1) onto 5- to 7-leaf, 9- to 11-leaf, and first bloom cotton. In both studies, weed control and cotton tolerance to pyroxasulfone-coated AMS was compared to pyroxasulfone applied postemergence (POST) and postemergence-directed (POST-directed). The check in both studies received non-herbicide-treated AMS (321 kg ha-1). Before treatment applications, all plots (including the check) were maintained weed-free with glyphosate and glufosinate. In both studies, pyroxasulfone applied POST was most injurious (8 to 16%), while pyroxasulfone-coated AMS resulted in ≤ 4% injury. Additionally, no differences in cotton lint yield were observed in both studies. With the exception of the lowest rate of AMS (161 kg ha-1; 79%), all AMS rates coated with pyroxasulfone controlled Palmer amaranth ≥ 83%, comparable to pyroxasulfone applied POST (92%) and POST-directed (89%). In the timing study, the application method did not affect Palmer amaranth control; however, applications made at the mid- and late timings outperformed early applications. These results indicate pyroxasulfone-coated AMS can control Palmer amaranth comparable to pyroxasulfone applied POST and POST-directed, with minimal risk of cotton injury. However, the application timing could warrant additional treatment to achieve adequate late-season weed control.
Academic-community research partnerships focusing on addressing the social determinants of health and reducing health disparities have grown substantially in the last three decades. Early-stage investigators (ESIs), however, are less likely to receive grant funding from organizations like the National Institutes of Health, and we know little about the facilitators and barriers they face on their career journeys or the best ways to support them and their community research partnerships. This study examines ESIs’ experiences with a program that funded and supported their community-partnered pilot health disparities research.
Methods:
Fourteen ESIs from five cohorts of pilot investigators participated in in-depth focus groups between April 2020 and February 2024. Two reviewers independently identified significant quotes and created codes. Thematic analysis was used to develop relevant themes.
Results:
The overarching theme was that the program was a launch pad for the ESIs’ research careers. Four distinct sub-themes contributing to the launch pad theme were: (1) ESI Growth & Adaptation; (2) Community and Support; (3) The Value of Collaboration and Partnership; (4) Need for Effective Mentorship. The results suggest the program offered ESIs and community partners substantial, unique support and resources, but challenges remained.
Conclusions:
Future programs helping ESIs who conduct community-engaged research to launch their research careers should consider implementing tailored support while offering strategies to eliminate or reduce institutional barriers, including strengthening mentoring.
An experiment was conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to evaluate residual herbicide-coated fertilizer for cotton tolerance and Palmer amaranth control. Treatments included acetochlor; atrazine; dimethenamid-P; diuron; flumioxazin; fluometuron; fluridone; fomesafen; linuron; metribuzin; pendimethalin; pyroxasulfone; pyroxasulfone + carfentrazone; S-metolachlor; and sulfentrazone. Each herbicide was individually coated on granular ammonium sulfate (AMS) and top-dressed at 321 kg ha-1 (67 kg N ha-1) onto 5- to 7-leaf cotton. The check received the equivalent rate of non-herbicide-treated AMS. Before top-dress, all plots (including the check) were treated with glyphosate and glufosinate to control previously emerged weeds. All herbicides resulted in transient cotton injury, except metribuzin. Cotton response to metribuzin varied by year and location. In 2022, metribuzin caused 11 to 39% and 8 to 17% injury at Clayton and Rocky Mount, respectively. In 2023, metribuzin caused 13 to 32% injury at Clayton and 73 to 84% injury at Rocky Mount. Pyroxasulfone (91%), pyroxasulfone + carfentrazone (89%), fomesafen (87%), fluridone (86%), flumioxazin (86%), and atrazine (85%) controlled Palmer amaranth ≥ 85%. Pendimethalin and fluometuron were the least effective treatments, resulting in 58% and 62% control, respectively. As anticipated, early season metribuzin injury translated into yield loss; plots treated with metribuzin yielded 640 kg ha-1 and were only comparable to linuron (790 kg ha-1). These findings research suggest, with the exception of metribuzin, residual herbicides coated on AMS may be suitable and effective in cotton production, providing growers with additional modes of action for late-season control of multiple herbicide-resistant Palmer amaranth.
Childhood maltreatment is linked with later depressive symptoms, but not every maltreated child will experience symptoms later in life. Therefore, we investigate whether genetic predisposition for depression (i.e., polygenic score for depression, PGSDEP) modifies the association between maltreatment and depressive symptoms, while accounting for different types of maltreatment and whether it was evaluated through prospective and retrospective reports. The sample included 541–617 participants from the Quebec Longitudinal Study of Child Development with information on maltreatment, including threat, deprivation, assessed prospectively (5 months–17 years) and retrospectively (reported at 23 years), PGSDEP and self-reported depressive symptoms (20–23 years). Using hierarchical linear regressions, we found that retrospective, but not prospective indicators of maltreatment (threat/deprivation/cumulative) were associated with later depressive symptoms, above and beyond the PGSDEP. Our findings also show the presence of gene–environment interactions, whereby the association between maltreatment (retrospective cumulative maltreatment/threat, prospective deprivation) and depression was strengthened among youth with higher PGSDEP scores. Consistent with the Diathesis-Stress hypothesis, our findings suggest that a genetic predisposition for depression may exacerbate the putative impact of maltreatment on later depressive symptoms, especially when maltreatment is retrospective. Understanding the gene–environment interplay emerging in the context of maltreatment has the potential to guide prevention efforts.
Jellyfishes have ecological and societal value, but our understanding of taxonomic identity of many jellyfish species remains limited. Here, an approach integrating morphological and molecular (16S ribosomal RNA and cytochrome oxidase I) data enables taxonomic assessment of the blubber jellyfish found in the Philippines. In this study, we aimed to resolve doubt on the taxonomy of Acromitoides purpurus, a valid binomen at the time of our research. Our morphological findings confirm that this jellyfish belongs to the genus Catostylus, and is distinct from known species of the genus inhabiting the Western Pacific, such as Catostylus ouwensi, Catostylus townsendi, and Catostylus mosaicus. Detailed morphological and molecular analyses of the type specimens from the Philippines with the other Catostylus species revive the binomen Catostylus purpurus and invalidate A. purpurus. Genetic analysis also distinguishes this Philippine jellyfish from C. townsendi and C. mosaicus. Through this study, we arranged several Catostylidae taxa into species inquirendae (Catostylus tripterus, Catostylus turgescens, and Acromitoides stiphropterus) and one genus inquirenda (Acromitoides) and provided an identification key for species of Catostylus. This comprehensive study confirms the blubber jellyfish as C. purpurus, enriching our understanding of jellyfish biodiversity. The integration of morphological and genetic analyses proves vital in resolving taxonomic ambiguities within the Catostylidae family and in the accurate identification of scyphozoan jellyfishes.
Rapid Acceleration of Diagnostics (RADx®) Tech was the key diagnostics component of a three-pronged national strategy, including vaccines and therapeutics, to respond to the COVID-19 pandemic. Unprecedented in the scale of its mission, its budget, its accelerated time frame, the extent of cross-government agency collaboration and information exchange, and the blending of business, academic, and investment best practices, RAD Tech successfully launched dozens of US Food and Drug Administration Emergency Use Authorization diagnostic tests, established a new model for rapidly translating diagnostic tests from the laboratory to the marketplace, and accelerated public acceptance of home-based diagnostic tests. This chapter provides an overview of the processes utilized by RADx Tech during the COVID-19 pandemic to improve clinical laboratory tests and identify, evaluate, support, validate, and commercialize innovative point-of-care and home-based tests that directly detected the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus.
To examine associations between executive function (EF) domains (attentional control, information processing, cognitive flexibility, and goal setting) and math computation performance at 7 and 13 years in children born very preterm (VP; <30 weeks' gestation), and secondly, to investigate the associations of 7-year EF with change in math performance from 7 to 13 years.
Participants and Methods:
In the prospective, longitudinal Victorian Infant Brain Studies (VIBeS) cohort of children born VP, assessment of EF and math performance was undertaken at 7 (n = 187) and 13 years (n = 174). Univariable and multivariable regression models (including all domains of EF) were used to examine associations between EF domains at both timepoints with math performance, as well as associations between EF at 7 years with change in math from 7 to 13 years.
Results:
At 7 and 13 years, all EF domains were positively associated with concurrent math performance, with multivariable models finding information processing, cognitive flexibility and goal setting independently contributed to math performance at both ages. All EF domains were positively associated with improvement in math performance from 7 to 13 years, with multivariable models finding that goal setting contributed unique variance to improvement in math over this period.
Conclusions:
This study provides evidence for a strong, consistent association between EF and math performance in children born VP and emphasizes the importance of goal setting capacity for later improvement in math performance.
One of the major pillars of the African Union is the integration of peoples and the ability for them to move freely from one member country to another, with the right to reside and practise their trade or profession. This aspect of integration found full expression in the Protocol to the Treaty Establishing the African Economic Community Relating to the Free Movement of Persons, Right of Residence and Right of Establishment, adopted in 2018. Upon operationalization, it will remove obstacles to the movement of people, capital and resources in the region and give expression to aspiration 2 of the African Union Agenda 2063. However, significant challenges lie on the path of its implementation. This article doctrinally reviews the protocol, looking at its prospects for promoting African integration and development, and anticipates some of the problems that the protocol will face. It concludes with recommendations for achieving its lofty but desirable ends.