We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To understand healthcare workers’ (HCWs) beliefs and practices toward blood culture (BCx) use.
Design:
Cross-sectional electronic survey and semi-structured interviews.
Setting:
Academic hospitals in the United States.
Participants:
HCWs involved in BCx ordering and collection in adult intensive care units (ICU) and wards.
Methods:
We administered an anonymous electronic survey to HCWs and conducted semi-structured interviews with unit staff and quality improvement (QI) leaders in these institutions to understand their perspectives regarding BCx stewardship between February and November 2023.
Results:
Of 314 HCWs who responded to the survey, most (67.4%) were physicians and were involved in BCx ordering (82.3%). Most survey respondents reported that clinicians had a low threshold to culture patients for fever (84.4%) and agreed they could safely reduce the number of BCx obtained in their units (65%). However, only half of them believed BCx was overused. Although most made BCx decisions as a team (74.1%), a minority reported these team discussions occurred daily (42.4%). A third of respondents reported not usually collecting the correct volume per BCx bottle, half were unaware of the improved sensitivity of 2 BCx sets, and most were unsure of the nationally recommended BCx contamination threshold (87.5%). Knowledge regarding the utility of BCx for common infections was limited.
Conclusions:
HCWs’ understanding of best collection practices and yield of BCx was limited.
The cyst nematodes, subfamily Heteroderinae, are plant pathogens of worldwide economic significance. A new cyst nematode of the genus Cactodera within the Heteroderinae, Cactodera xinanensis n. sp., was isolated from rhizospheres of crops in the Guizhou and Sichuan provinces of southwest China. The new species was characterized by having the cyst with a length/width = 1.3 ± 0.1 (1.1–1.6), a fenestral diameter of 28.1 ± 4.3 (21.3–38.7) μm, vulval denticles present; second-stage juvenile with stylet 21.5 ± 0.5 (20.3–22.6) μm long, tail 59.4 ± 2.0 (55.9–63.8) μm long and hyaline region 28.7 ± 2.7 (25.0–36.3) μm long, lateral field with four incisures; the eggshell with punctations. The new species can be differentiated from other species of Cactodera by a longer tail and hyaline region of second-stage juveniles. Phylogenetic relationships within populations and species of Cactodera are given based on the analysis of the internal transcribed spacer (ITS-rRNA), the large subunit of the nuclear ribosomal RNA (28S-rRNA) D2-D3 region and the partial cytochrome oxidase subunit I (COI) gene sequences here. The ITS-rRNA, 28S-rRNA and COI gene sequences clearly differentiated Cactodera xinanensis n. sp. from other species of Cactodera. A key and a morphological identification characteristic table for the species of Cactodera are included in the study.
The gut microbiome is impacted by certain types of dietary fibre. However, the type, duration and dose needed to elicit gut microbial changes and whether these changes also influence microbial metabolites remain unclear. This study investigated the effects of supplementing healthy participants with two types of non-digestible carbohydrates (resistant starch (RS) and polydextrose (PD)) on the stool microbiota and microbial metabolite concentrations in plasma, stool and urine, as secondary outcomes in the Dietary Intervention Stem Cells and Colorectal Cancer (DISC) Study. The DISC study was a double-blind, randomised controlled trial that supplemented healthy participants with RS and/or PD or placebo for 50 d in a 2 × 2 factorial design. DNA was extracted from stool samples collected pre- and post-intervention, and V4 16S rRNA gene sequencing was used to profile the gut microbiota. Metabolite concentrations were measured in stool, plasma and urine by high-performance liquid chromatography. A total of fifty-eight participants with paired samples available were included. After 50 d, no effects of RS or PD were detected on composition of the gut microbiota diversity (alpha- and beta-diversity), on genus relative abundance or on metabolite concentrations. However, Drichlet’s multinomial mixture clustering-based approach suggests that some participants changed microbial enterotype post-intervention. The gut microbiota and fecal, plasma and urinary microbial metabolites were stable in response to a 50-d fibre intervention in middle-aged adults. Larger and longer studies, including those which explore the effects of specific fibre sub-types, may be required to determine the relationships between fibre intake, the gut microbiome and host health.
To synthesize evidence and identify gaps in the literature on environmental cleaning and disinfection in the operating room based on a human factors and systems engineering approach guided by the Systems Engineering Initiative for Patient Safety (SEIPS) model.
Design:
A systematic scoping review.
Methods:
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched 4 databases (ie, PubMed, EMBASE, OVID, CINAHL) for empirical studies on operating-room cleaning and disinfection. Studies were categorized based on their objectives and designs and were coded using the SEIPS model. The quality of randomized controlled trials and quasi-experimental studies with a nonequivalent groups design was assessed using version 2 of the Cochrane risk-of-bias tool for randomized trials.
Results:
In total, 40 studies were reviewed and categorized into 3 groups: observational studies examining the effectiveness of operating-room cleaning and disinfections (11 studies), observational study assessing compliance with operating-room cleaning and disinfection (1 study), and interventional studies to improve operating-room cleaning and disinfection (28 studies). The SEIPS-based analysis only identified 3 observational studies examining individual work-system components influencing the effectiveness of operating-room cleaning and disinfection. Furthermore, most interventional studies addressed single work-system components, including tools and technologies (20 studies), tasks (3 studies), and organization (3 studies). Only 2 studies implemented interventions targeting multiple work-system components.
Conclusions:
The existing literature shows suboptimal compliance and inconsistent effectiveness of operating-room cleaning and disinfection. Improvement efforts have been largely focused on cleaning and disinfection tools and technologies and staff monitoring and training. Future research is needed (1) to systematically examine work-system factors influencing operating-room cleaning and disinfection and (2) to redesign the entire work system to optimize operating-room cleaning and disinfection.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Subclinical seizures are common in hospitalized patients and require electroencephalography (EEG) for detection and intervention. At our institution, continuous EEG (cEEG) is not available, but intermittent EEGs are subject to constant live interpretation. As part of quality improvement (QI), we sought to estimate the residual missed seizure rate at a typical quaternary Canadian health care center without cEEG.
Methods:
We calculated residual risk percentages using the clinically validated 2HELPS2B score to risk-stratify EEGs before deriving a risk percentage using a MATLAB calculator which modeled the risk decay curve for each recording. We generated a range of estimated residual seizure rates depending on whether a pre-cEEG screening EEG was simulated, EEGs showing seizures were included, or repeat EEGs on the same patient were excluded.
Results:
Over a 4-month QI period, 499 inpatient EEGs were scored as low (n = 125), medium (n = 123), and high (n = 251) seizure risk according to 2HELPS2B criteria. Median recording duration was 1:00:06 (interquartile range, IQR 30:40–2:21:10). The model with highest residual seizure rate included recordings with confirmed electrographic seizures (median 20.83%, IQR 20.6–26.6%), while the model with lowest residual seizure rate was in seizure-free recordings (median 10.59%, IQR 4%–20.6%). These rates were significantly higher than the benchmark 5% miss-rate threshold set by 2HELPS2B (p<0.0001).
Conclusions:
We estimate that intermittent inpatient EEG misses 2–4 times more subclinical seizures than the 2HELPS2B-determined acceptable 5% seizure miss-rate threshold for cEEG. Future research is needed to determine the impact of potentially missed seizures on clinical care.
This study aimed to compare the pre- and post-operative vestibular and equilibrium functions of patients with cholesteatoma-induced labyrinthine fistulas who underwent different management methods.
Methods
Data from 49 patients with cholesteatoma-induced labyrinthine fistulas who underwent one of three surgical procedures were retrospectively analysed. The three management options were fistula repair, obliteration and canal occlusion.
Results
Patients underwent fistula repair (n = 8), canal occlusion (n = 18) or obliteration procedures (n = 23). Patients in the fistula repair and canal occlusion groups suffered from post-operative vertigo and imbalance, which persisted for longer than in those in the obliteration group. Despite receiving different management strategies, all patients achieved complete recovery of equilibrium functions through persistent efforts in rehabilitation exercises.
Conclusion
Complete removal of the cholesteatoma matrix overlying the fistula is reliable for preventing iatrogenic hearing deterioration due to unremitting labyrinthitis. Thus, among the three fistula treatments, obliteration is the optimal method for preserving post-operative vestibular functions.
Water fountains (WFs) are thought to represent an early stage in the morphological evolution of circumstellar envelopes surrounding low- and intermediate-mass evolved stars. These objects are considered to transition from spherical to asymmetric shapes. Despite their potential importance in this transformation process of evolved stars, there are only a few known examples. To identify new WF candidates, we used databases of circumstellar OH (1612 MHz) and H2O (22.235 GHz) maser sources, and compared the velocity ranges of the two maser lines. Finally, 41 sources were found to have a velocity range for the H2O maser line that exceeded that of the OH maser line. Excluding known planetary nebulae and after reviewing the maser spectra in the original literature, we found for 11 sources the exceedance as significant, qualifying them as new WF candidates.
OBJECTIVES/GOALS: The SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus-2), which underlies the current COVID-19 pandemic, among other tissues, also targets the central nervous system (CNS). The goal of this study is to investigate mechanisms of neuroinflammation in Lipopolysaccharides (LPS)-treated mouse model and SARS-CoV-2-infected hamsters. METHODS/STUDY POPULATION: In this research I will assay vascular reactivity of cerebral vessels to assess vascular dysfunction within the microcirculation. I will determine expression of proinflammatory cytokines, coagulation factors and AT1 receptors (AT1R) in isolated microvessels from the circle of Willis to assess inflammation, thrombosis and RAS activity in the microvasculature. LPS and SARS-CoV-2, are both associated with coagulopathies and because of that I will measure concentration of PAI-1, von Willebrand Factor, thrombin and D-dimer to assess the thrombotic pathway in the circulation. Histology and immunohistochemistry will assess immune cell type infiltration into the brain parenchyma, microglia activation and severity of neuroinflammation and neural injury. RESULTS/ANTICIPATED RESULTS: We hypothesize that under conditions of reduced ACE2 (e.g., SARS-CoV-2 infection), AT1R activity is upregulated in the microvasculature. In the presence of an inflammatory insult, these AT1Rs promote endothelialitis and immunothrombosis through pro-thrombotic pathways and pro-inflammatory cytokine production leading to endothelial dysfunction in the microvasculature, blood brain barrier (BBB) injury, deficits in cognition and increased anxiety. We will test this hypothesis through 2 aims: Aim 1: Determine the role of the pro-injury arm of the RAS in the pathophysiology of the brain in animal models of neuroinflammation and COVID-19. Aim 1: Determine the role of the protective arm of the RAS in the pathophysiology of the brain in animal models of neuroinflammation and COVID-19. DISCUSSION/SIGNIFICANCE: This study will provide insights that will complement on-going clinical trials on angiotensin type 1 receptor (AT1R) blockers (ARBs) in COVID-19. This research is a necessary first step in understanding mechanisms of brain pathogenesis that can set the groundwork for future studies of more complex models of disease.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.
Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.
The use of a submerged inlet is advantageous in modern aircrafts because of its low drag resistance, small radar cross section and ease of maintenance. Although it is well known that the forebody boundary layer deteriorates the aerodynamic performance of a submerged inlet, the level of impact has not yet been fully quantified. To quantify the forebody boundary-layer effect, a submerged diverter was designed to remove a portion of the low-energy boundary flow. The flow pattern and aerodynamic performance of a submerged inlet, with and without the diverter, were investigated by wind-tunnel experimentation and numerical simulations. The effects of mass flow, free stream speed, angle-of-attack and sideslip angle on the aerodynamic characteristics of the inlet with and without the submerged diverter were studied, over an operating envelope of M0 = 0.3 ∼ 0.6, $\alpha$ = –6$^{\circ}$ ∼ 8$^{\circ}$ and $\beta$ = 0$^{\circ}$ ∼ 4$^{\circ}$. The results indicate that both the total pressure loss and the circumferential distortion can be significantly reduced with the removal of the forebody boundary-layer low-energy flow. Meanwhile, the main mechanisms for losses in the submerged inlet were also analysed.
The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Stratospheric airships are promising aircraft, usually designed as a non-rigid airship. As an essential part of the non-rigid airship, the envelope plays a significant role in maintaining its shape and bearing the external force load. Generally, the envelope material of a flexible airship consists of plain-weave fabric, composed of warp and weft fibre yarn. At present, biaxial tensile experiments are the primary method used to study the stress–strain characteristics of such flexible airship materials. In this work, biaxial tensile testing of UN-5100 material was carried out. The strain on the material under unusual stress and the stress ratio were obtained using Digital Image Correlation (DIC) technology. Also, the stress–strain curve was corrected by polynomial fitting. The slope of the stress–strain curve at different points, the Membrane Structures Association of Japan (MSAJ) standard and the Radial Basis Function (RBF) model were compared to identify the stress–strain characteristics of the materials. Some conclusions on the mechanical properties of the flexible airship material can be drawn and will play a significant role in the design of such envelopes.
Obtaining objective, dietary exposure information from individuals is challenging because of the complexity of food consumption patterns and the limitations of self-reporting tools (e.g., FFQ and diet diaries). This hinders research efforts to associate intakes of specific foods or eating patterns with population health outcomes.
Design:
Dietary exposure can be assessed by the measurement of food-derived chemicals in urine samples. We aimed to develop methodologies for urine collection that minimised impact on the day-to-day activities of participants but also yielded samples that were data-rich in terms of targeted biomarker measurements.
Setting:
Urine collection methodologies were developed within home settings.
Participants:
Different cohorts of free-living volunteers.
Results:
Home collection of urine samples using vacuum transfer technology was deemed highly acceptable by volunteers. Statistical analysis of both metabolome and selected dietary exposure biomarkers in spot urine collected and stored using this method showed that they were compositionally similar to urine collected using a standard method with immediate sample freezing. Even without chemical preservatives, samples can be stored under different temperature regimes without any significant impact on the overall urine composition or concentration of forty-six exemplar dietary exposure biomarkers. Importantly, the samples could be posted directly to analytical facilities, without the need for refrigerated transport and involvement of clinical professionals.
Conclusions:
This urine sampling methodology appears to be suitable for routine use and may provide a scalable, cost-effective means to collect urine samples and to assess diet in epidemiological studies.
The relative effect of the atypical antipsychotic drugs and conventional agents on neurocognition in patients with early-stage schizophrenia has not been comprehensively determined.
Aims
The present study aimed to assess the cognitive effects of atypical and conventional antipsychotic drugs on neurocognition under naturalistic treatment conditions.
Objectives
In a 12 months open-label, multicenter study, 698 patients with early-stage schizophrenia (< 5 years) were monotherapy with chlorpromazine, sulpiride, clozapine, risperidone, olanzapine, quetiapine or aripiprazole. Wechsler Memory Scale--Revised Visual Reproduction Test, Wechsler Adult Intelligence Scale Revised Digit Symbol Test and Digit-span Task Test, Trail Making Tests Part A and Part B, and Wisconsin Card Sorting Test were administered at baseline and 12 months follow-up evaluation. The primary outcome was change in a cognitive composite score after 12 months of treatment.
Results
Compared with scores at baseline, the composite cognitive test scores and individual test scores had significant improvement for all seven treatment groups at 12-month follow-up evaluation (all p-values ≤ 0.013). However, olanzapine and quetiapine provided greater improvement than that provided by chlorpromazine and sulpiride in the composite score, processing speed and executive function (all p-values ≤ 0.045).
Conclusions
Both conventional and atypical antipsychotic medication long-term maintenance treatment can benefit congitive function in patients with early-stage schizophrenia, but olanzapine and quetiapine may be superior to chlorpromazine and sulpiride in improving some areas of neurocognitive function.