We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using immunostaining methodology, we traced the axonal projection of FMRFamide (Phe-Met-Arg-Phe-NH2)-like immunoreactive (LI) medial neurosecretory cells (MNCs) and lateral neurosecretory cells (LNCs) from the brain into the ventral nerve cord (VNC) and retrocerebral complex in Bombyx mori (L.) (Lepidoptera: Bombycidae). Of the seven pairs of FMRFamide-LI MNCs, one pair extended its axons from the brain pars intercerebralis into the VNC ipsilateral connective where they appeared to terminate. The axons of the remaining MNCs ran through decussation in the brain median region and contralateral nervi corporis cardiaci (NCC) I out of the brain, and eventually innervated the contralateral corpus cardiacum (CC). Axons from the single pair of FMRFamide-LI LNCs projected into the ipsilateral NCC II fused with NCC I without decussation in the brain, and finally terminated in the CC. These results suggest that transport of the FMRFamide-like neuropeptide from may be related to the modulation of functions such as gut contraction in MNCs terminating in the VNC, and regulation of production and/or secretion of specific hormones such as juvenile hormone in MNCs and LNCs terminating in the CC.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.