We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Micro-tensile properties of hard and soft thin films, TiN and Au, were evaluated by directly measuring tensile strain in film tension using the micro-ESPI(electronic Speckle Pattern Interferometry) technique. Micro-tensile stress-strain curves for these films were obtained and the properties were determined. TiN thin film 1 μm thick and Au films with two different thicknesses (t=0.5 μm and 1 μm) were deposited onto the silicon wafers, respectively, and micro-tensile specimens wide 50, 100 and 200 μm were fabricated using micromachining. In-situ measurement of the micro-tensile strain during tensile loading was carried out using the subsequent strain measurement algorithm and the ESPI system developed in this study. The micro-tensile curves showed that TiN thin film was a linear-elastic material showing no plastic deformation and Au thin film was an elastic-plastic material showing significant plastic flow. Effect of the specimen dimensions on mechanical properties was examined. It was revealed that tensile strengths for both films were slightly increased with increasing specimen width. Furthermore, variations of yielding strengths for the thin film Au with change of the dimension were investigated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.