We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper considers the guidance issue for attackers against aircraft with active defense in a two-on-two engagement, which includes an attacker, a protector, a defender and a target. A cooperative line-of-sight guidance scheme with prescribed performance and input saturation is proposed utilising the sliding mode control and line-of-sight guidance theories, which guarantees that the attacker is able to capture the target with the assistance of the protector remaining on the line-of-sight between the defender and the attacker in order to intercept the defender. A fixed-time prescribed performance function and first-order anti-saturation auxiliary variable are designed in the game guidance strategy to constrain the overshoot of the guidance variable and satisfy the requirement of an overload manoeuver. The proposed guidance strategy alleviates the influence of external disturbance by implementing a fixed-time observer and the chattering phenomenon caused by the sign function. Finally, nonlinear numerical simulations verify the cooperative guidance strategies.
Flexible electronics researchers have been conducting studies to explore the response of flexible stretchable electrodes to strain. The regulation of strain response in current flexible stretchable electrodes relies primarily on altering the material system, interfacial adhesion, or electrode structure. However, modifying the material system or interfacial adhesion can negatively disrupt the stretchable electrode preparation process, making commercialization a significant challenge. Additionally, the material system may be inadequate in extreme environments such as high temperatures. Hence a systematic structural design approach is crucial for effective response modulation of stretchable electrodes. One potential solution is the design of fibre structures from the micro to macro scale. This article focuses on discussing how the response of stretchable electrodes can be modulated by fibres in different states. The discussion includes fibres on elastic films, fibres directly constituting fibrous membranes at the microscopic level, and fibres constituting metamaterials at the fine level. The modulation can be achieved by altering the orientation of the fibres, the geometrical structure of the fibres themselves, and the geometrical structure formed between the fibres. Additionally, the article analyses the current situation of stretchable electrodes in extreme environments such as high temperatures. It also reviews the development of ceramic fibre membranes that can be stretched in high-temperature environments. The authors further discuss how the stretchability of ceramic fibre membranes can be improved through the structuring of ceramic fibre membranes with metamaterials. Ultimately, the goal is to realize stretchable electrodes that can be used in extreme environments such as high temperatures.
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
The Kuqa Depression in the northern Tarim Basin, NW China, is characterized by fault-controlled anticlines where natural fractures may influence production. Natural fractures in the Lower Cretaceous tight sandstones in the depression have been studied using seismic profiles, borehole images, cores and thin-sections. Results show that thrust faults, two types of opening-mode macrofractures and two types of microfractures are present. Thrust faults were generated during Cenozoic N–S-directed tectonic shortening and have hydraulically linked Jurassic source rocks and Cretaceous sandstones. Opening-mode fractures can be subdivided on the basis of sizes, filling characteristics and distribution patterns. Type 1 macrofractures are barren or mainly calcite-lined. They have straight traces with widths (opening displacements) that are of the order of magnitude of 10 μm, suggesting that their primary role is that of migration channels. Type 2 macrofractures are calcite-filled opening-mode fractures. They have an elliptical or tabular shape with sharply tapering tips. Transgranular microfractures are lens-shaped and open or filled mostly by calcite; maximum widths range between 0.01 mm and 0.1 mm. Intragranular microfractures are the most common microfracture type. They are filled by calcite, feldspar or quartz. The macrofractures and transgranular microfractures have regular distributions, while most intragranular microfractures are irregularly distributed owing to their inherited origin. The results imply that natural fractures in the tight sandstones were formed as tectonic, diagenetic and natural hydraulic origins. In situ stress and cementation analyses suggest that Type 1 macrofractures and their genesis-related microfractures have controlled the present flow system of the tight sandstones.
Three-dimensional graphene (3D-GN)/Cu/Fe3O4 composite support materials were synthesized by a modified chemical reduction method using graphene oxide precursor. A 3D-GN/Cu/Fe3O4 biosensor was prepared by coating the electrode with laccase. The electrochemical properties of the biosensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry using potassium ferricyanide, phosphate-buffered saline (PBS) solution, and bisphenol A (BPA) solution. The current response of 3D-GN/Cu/Fe3O4 biosensors presents a remarkable sensitivity based on CV. The linear range of BPA is 7.2–18 μM using differential pulse voltammetry in PBS solution (pH = 4.0). A linear fitting equation of the laccase biosensor was observed for the current response as a function of BPA concentration. The detection limit was decreased to 1.7 μM. The detection approach herein turns out to be highly sensitive, has a wide linear range, and exhibits excellent stability.
Wire-shaped supercapacitors (WSSCs) hold great promise in portable and wearable electronics. Herein, a novel kind of high-performance coaxial WSSCs has been demonstrated and realized by scrolling porous carbon dodecahedrons/Al foil film electrode on vertical FeOOH nanosheets wrapping carbon fiber tows (FeOOH NSs/CFTs) yarn electrode. Remarkably, ionogel is utilized as solid-state electrolyte and exhibits a high thermal/electrochemical stability, which effectively ensures the great reliability and high operating voltage of coaxial WSSCs. Benefiting from the intriguing configuration, the coaxial WSSCs with superior flexibility act as efficient energy storage devices and exhibit low resistance, high volumetric energy density (3.2 mW h/cm3), and strong durability (82% after 10,000 cycles). Importantly, the coaxial WSSCs can be effectively recharged by harvesting sustainable wind source and repeatedly supply power to the lamp without a decline of electrochemical performance. Considering the facile fabrication technology with an outstanding performance, this work has paved the way for the integration of sustainable energy harvesting and wearable energy storage units.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
This paper investigates a wideband and low axial ratio circularly polarized (CP) antenna, which is composed of a monopole on a novel polarization rotating reflective surface (PRRS) based on a corner-truncated artificial magnetic conductor (AMC) structure. By adjusting the dimensions of truncated corner properly, the PRRS has two polarization rotation (PR) frequency points. Then, a large PR band of 18% (5.55–6.65 GHz) can be achieved with two adjacent PR frequency points coming together. The profile of the newly PRRS is only0.04λ0. With corner-truncated AMC-based PRRS loading, a measured impedance bandwidth of 1.8 GHz (5.4–7.2 GHz) and the 3 dB axial ratio bandwidth of 1 GHz (5.55–6.65 GHz) could be obtained by the monopole antenna and validated by measurements. The values of AR were well below 1 dB at most of the CP region, which show a perfect CP performance. Moreover, the proposed antenna has exhibited a large axial ratio beamwidth in both the xoz- and yoz-planes and a peak gain of 6.1 dBic within the operational bandwidth.
Diabetes mellitus is an important risk factor for CVD. A previous study showed that high glucose induced the apoptosis of human umbilical vein endothelial cells (HUVEC) via the sequential activation of reactive oxygen species, Jun N-terminal kinase (JNK) and caspase-3. The apoptosis cascade could be blocked by ascorbic acid at the micromolar concentration (100 μm). In addition to ascorbic acid, quercetin, the most abundant dietary flavonol, has been recently actively studied in vascular protection effects due to its antioxidant effect at low micromolar concentrations (10–50 μm). Quercetin sulfate/glucuronide, the metabolite of quercetin in blood, however, has been rarely evaluated. In the present study, we investigated the effect of quercetin sulfate/glucuronide on the prevention of high glucose-induced apoptosis of HUVEC. HUVEC were treated with media containing high glucose (33 mm) in the presence or absence of ascorbic acid (100 μm) or quercetin sulfate/glucuronide (100 nm, 300 nm and 1 μm). For the detection of apoptosis, a cell death detection ELISA assay was used. The level of intracellular H2O2 was measured by flow cytometry. JNK and caspase-3 were evaluated by a kinase activity assay and Western blot analysis. The results showed that high glucose-induced apoptosis was inhibited by quercetin sulfate/glucuronide in a dose-dependent manner. The effect of quercetin sulfate/glucuronide on H2O2 quenching, inhibition of JNK and caspase-3 activity at the nanomolar concentration (300 nm) was similar to that of ascorbic acid at the micromolar concentration (100 μm). The findings of the present study may shed light on the pharmacological application of quercetin in CVD.
We have demonstrated organic thin-film transistor devices on synthesis paper of polypropylene (PP). All the fabrications are in solution-based processes except electrodes. As a barrier and smoother layer, photosensitive epoxy, 5μm-thich was coated on the paper substrate by using slit die coating. Polyvinyl phenol (PVP) was mixed with poly (melamine-co-formaldehyde) methylated, filmed by spin coating and ultraviolet (UV) cross linked to provide the gate dielectric layer. Using poly (3-hexylthiophene) as an active layer, a high-performance organic transistor with field effect mobility up to 0.006 cm2/ V s and an on/off ratio of 50 can be achieved. For the applications in flexible and disposable electronics, to built organic transistors on a cheap synthesis paper substrate can extremely lower the cost.
We derive the asymptotic joint normality, by a martingale approach, for the numbers of upper records, lower records and inversions in a random sequence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.