We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recommender systems are ubiquitous in modern life and are one of the main monetization channels for Internet technology giants. This book helps graduate students, researchers and practitioners to get to grips with this cutting-edge field and build the thorough understanding and practical skills needed to progress in the area. It not only introduces the applications of deep learning and generative AI for recommendation models, but also focuses on the industry architecture of the recommender systems. The authors include a detailed discussion of the implementation solutions used by companies such as YouTube, Alibaba, Airbnb and Netflix, as well as the related machine learning framework including model serving, model training, feature storage and data stream processing.
Knowledge of the critical periods of crop–weed competition is crucial for designing weed management strategies in cropping systems. In the Lower Yangtze Valley, China, field experiments were conducted in 2011 and 2012 to study the effect of interference from mixed natural weed populations on cotton growth and yield and to determine the critical period for weed control (CPWC) in direct-seeded cotton. Two treatments were applied: allowing weeds to infest the crop or keeping plots weed-free for increasing periods (0, 1, 2, 4, 6, 8, 10, 12, 14, and 20 wk) after crop emergence. The results show that mixed natural weed infestations led to 35- to 55-cm shorter cotton plants with stem diameters 10 to 13 mm smaller throughout the season, fitting well with modified Gompertz and logistic models, respectively. Season-long competition with weeds reduced the number of fruit branches per plant by 65% to 82%, decreasing boll number per plant by 86% to 96% and single boll weight by approximately 24%. Weed-free seed cotton yields ranged from 2,900 to 3,130 kg ha−1, while yield loss increased with the duration of weed infestation, reaching up to 83% to 96% compared with permanent weed-free plots. Modified Gompertz and logistic models were used to analyze the impact of increasing weed control duration and weed interference on relative seed cotton yield (percentage of season-long weed-free cotton), respectively. Based on a 5% yield loss threshold, the CPWC was found to be from 145 to 994 growing degree days (GDD), corresponding to 14 to 85 d after emergence (DAE). These findings emphasize the importance of implementing effective weed control measures from 14 to 85 DAE in the Lower Yangtze Valley to prevent crop losses exceeding a 5% yield loss threshold.
Suicidal ideation (SI) is very common in patients with major depressive disorder (MDD). However, its neural mechanisms remain unclear. The anterior cingulate cortex (ACC) region may be associated with SI in MDD patients. This study aimed to elucidate the neural mechanisms of SI in MDD patients by analyzing changes in gray matter volume (GMV) in brain structures in the ACC region, which has not been adequately studied to date.
Methods
According to the REST-meta-MDD project, this study subjects consisted of 235 healthy controls and 246 MDD patients, including 123 MDD patients with and 123 without SI, and their structural magnetic resonance imaging data were analyzed. The 17-item Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms. Correlation analysis and logistic regression analysis were used to determine whether there was a correlation between GMV of ACC and SI in MDD patients.
Results
MDD patients with SI had higher HAMD scores and greater GMV in bilateral ACC compared to MDD patients without SI (all p < 0.001). GMV of bilateral ACC was positively correlated with SI in MDD patients and entered the regression equation in the subsequent logistic regression analysis.
Conclusions
Our findings suggest that GMV of ACC may be associated with SI in patients with MDD and is a sensitive biomarker of SI.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
This paper considers the guidance issue for attackers against aircraft with active defense in a two-on-two engagement, which includes an attacker, a protector, a defender and a target. A cooperative line-of-sight guidance scheme with prescribed performance and input saturation is proposed utilising the sliding mode control and line-of-sight guidance theories, which guarantees that the attacker is able to capture the target with the assistance of the protector remaining on the line-of-sight between the defender and the attacker in order to intercept the defender. A fixed-time prescribed performance function and first-order anti-saturation auxiliary variable are designed in the game guidance strategy to constrain the overshoot of the guidance variable and satisfy the requirement of an overload manoeuver. The proposed guidance strategy alleviates the influence of external disturbance by implementing a fixed-time observer and the chattering phenomenon caused by the sign function. Finally, nonlinear numerical simulations verify the cooperative guidance strategies.
Palygorskite (Pal) shows great potential for physical, chemical and biological uses due to its colloidal, catalytic and adsorption properties. Pal mines, however, are facing the challenge of low-grade materials (5–15%), making it difficult to use Pal in emerging fields such as new materials, environmental protection and health. Therefore, there is an urgent need to develop an efficient method for separating and purifying Pal to obtain high purity levels. Hence, we have developed a dispersant-assisted rotating liquid film reactor separation strategy based on sodium hexametaphosphate as the dispersant. This strategy utilizes the double electron layer of Pal and the density difference between impurities to achieve effective disaggregation and purification of Pal bundles through the promotion of repulsive driving effects. Under optimal conditions, the purity of Pal can be increased from less than 10% to over 80%. This research presents a novel approach to the efficient refining of low-grade Pal. The crudely purified Pal’s adsorption capacity for methylene blue increased from 84.2 to 256.4 mg g–1.
The condition assessment of underground infrastructure (UI) is critical for maintaining the safety, functionality, and longevity of subsurface assets like tunnels and pipelines. This article reviews various data acquisition techniques, comparing their strengths and limitations in UI condition assessment. In collecting structured data, traditional methods like strain gauge can only obtain relatively low volumes of data due to low sampling frequency, manual data collection, and transmission, whereas more advanced and automatic methods like distributed fiber optic sensing can gather relatively larger volumes of data due to automatic data collection, continuous sampling, or comprehensive monitoring. Upon comparison, unstructured data acquisition methods can provide more detailed visual information that complements structured data. Methods like closed-circuit television and unmanned aerial vehicle produce large volumes of data due to their continuous video recording and high-resolution imaging, posing great challenges to data storage, transmission, and processing, while ground penetration radar and infrared thermography produce smaller volumes of image data that are more manageable. The acquisition of large volumes of UI data is the first step in its condition assessment. To enable more efficient, accurate, and reliable assessment, it is recommended to (1) integrate data analytics like artificial intelligence to automate the analysis and interpretation of collected data, (2) to develop robust big data management platforms capable of handling large volumes of data storage, processing and analysis, (3) to couple different data acquisition technologies to leverage the strengths of each technique, and (4) to continuously improve data acquisition methods to ensure efficient and reliable data acquisition.
The presence of dispersed-phase droplets can result in a notable increase in a system's drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid–liquid two-phase turbulence in a Taylor–Couette geometry. The dispersed phase has the same density and viscosity as the continuous phase. The Reynolds number $Re\equiv r_i\omega _i d/\nu$ is fixed at 5200, the volume fraction of the dispersed phase is up to $40\,\%$, and the Weber number $We\equiv \rho u^2_\tau d/\sigma$ is approximately 8. It is found that the increase in the system's drag originates from the contribution of interfacial tension. Specifically, droplets experience significant deformation and stretching in the streamwise direction due to shear near the inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This causes opposing interfacial tension effects on the fore head and rear end of the droplets. For the fore head of the droplets, the effect of interfacial tension appears to act against the flow direction. For the rear end, the effect appears to act in the flow direction. The increase in the system's drag is attributed primarily to the effect of interfacial tension on the fore head of the droplets which leads to the hindering effect of the droplets on the surrounding continuous phase. This hindering effect disrupts the formation of high-speed streaks, favouring the formation of low-speed ones, which are generally associated with higher viscous stress and drag of the system. This study provides new insights into the mechanism of drag enhancement reported in our previous experiments.
We investigate the coupling effects of the two-phase interface, viscosity ratio and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor–Couette turbulence at a system Reynolds number of $6\times 10^3$ and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses on four different scenarios: neutral droplets, low-viscosity droplets, light droplets and low-viscosity light droplets. We find that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement through the two-phase interface, whereas light droplets reduce the system's drag by explicitly reducing Reynolds stress due to the density dependence of Reynolds stress. In addition, low-viscosity light droplets contribute to greater drag reduction by further reducing momentum transport near the inner cylinder and implicitly reducing Reynolds stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag enhancement is not strongly correlated with TKE transport for both neutral droplets and low-viscosity droplets. Light droplets primarily reduce the production term by diminishing Reynolds stress, whereas the density contrast between the phases boosts TKE transport near the inner wall. Therefore, the reduction in the dissipation rate is predominantly attributed to decreased turbulence production, causing drag reduction. For low-viscosity light droplets, the production term diminishes further, primarily due to their greater reduction in Reynolds stress, while reduced viscosity weakens the density difference's contribution to TKE transport near the inner cylinder, resulting in a more pronounced reduction in the dissipation rate and consequently stronger drag reduction. Our findings provide new insights into the physics of turbulence modulation by the dispersed phase in two-phase turbulence systems.
The spatio-temporal scales, as well as a comprehensive self-sustained mechanism of the reattachment unsteadiness in shock wave/boundary layer interaction, are investigated in this study. Direct numerical simulations reveal that the reattachment unsteadiness of a Mach 7.7 laminar inflow causes over $26\,\%$ variation in wall friction and up to $20\,\%$ fluctuation in heat flux at the reattachment of the separation bubble. A statistical approach, based on the local reattachment upstream movement, is proposed to identify the spanwise and temporal scales of reattachment unsteadiness. It is found that two different types, i.e. self-induced and random processes, dominate different regions of reattachment. A self-sustained mechanism is proposed to comprehend the reattachment unsteadiness in the self-induced region. The intrinsic instability of the separation bubble transports vorticity downstream, resulting in an inhomogeneous reattachment line, which gives rise to baroclinic production of quasi-streamwise vortices. The pairing of these vortices initiates high-speed streaks and shifts the reattachment line upstream. Ultimately, viscosity dissipates the vortices, triggering instability and a new cycle of reattachment unsteadiness. The temporal scale and maximum vorticity are estimated with the self-sustained mechanism via order-of-magnitude analysis of the enstrophy. The advection speed of friction, derived from the assumption of coherent structures advecting with a Blasius-type boundary layer, aligns with the numerical findings.
This study aimed to describe outcomes of paediatric stapes surgery at an academic tertiary care centre.
Methods
Electronic medical records of patients younger than 21 years who underwent stapedotomy between September 2013 and July 2020 were reviewed.
Results
A total of 17 patients (7 male, 10 female) were included in our study; 14 underwent surgery on one ear while 3 underwent surgery on both ears (20 ears total). Mean pre-operative air-bone gap was 34.5 dB (standard deviation, 11). At three months, the mean post-operative air-bone gap was 20.6 dB (standard deviation, 10.2), with a mean improvement of 17 dB (standard deviation, 12.1). Sixty-four per cent of patients had closure of their air-bone gap to 20 dB or less. A negative correlation between pre-operative body-mass index and post-operative air-bone gap was statistically significant (n = 14, p = 0.03, r = -0.57 [95% confidence interval -0.85, -0.04]).
Conclusion
Paediatric stapedotomy can be effective and safe. In this cohort, age was not correlated with improvement in air-bone gap; pre-operative body mass index was significantly correlated with post-operative air-bone gap.
Whether material deprivation-related childhood socio-economic disadvantages (CSD) and care-related adverse childhood experiences (ACE) have different impacts on depressive symptoms in middle-aged and older people is unclear.
Methods
In the Guangzhou Biobank Cohort Study, CSD and ACE were assessed by 7 and 5 culturally sensitive questions, respectively, on 8,716 participants aged 50+. Depressive symptoms were measured by 15-item Geriatric Depression Scale (GDS). Multivariable linear regression, stratification analyses, and mediation analyses were done.
Results
Higher CSD and ACE scores were associated with higher GDS score in dose-response manner (P for trend <0.001). Participants with one point increment in CSD and ACE had higher GDS score by 0.11 (95% confidence interval [CI], 0.09–0.14) and 0.41 (95% CI, 0.35–0.47), respectively. The association of CSD with GDS score was significant in women only (P for sex interaction <0.001; women: β (95% CI)=0.14 (0.11–0.17), men: 0.04 (−0.01 to 0.08)). The association between ACE and GDS score was stronger in participants with high social deprivation index (SDI) (P for interaction = 0.01; low SDI: β (95% CI)=0.36 (0.29–0.43), high SDI: 0.64 (0.48–0.80)). The proportion of association of CSD and ACE scores with GDS score mediated via education was 20.11% and 2.28%.
Conclusions
CSD and ACE were associated with late-life depressive symptoms with dose-response patterns, especially in women and those with low adulthood socio-economic status. Education was a major mediator for CSD but not ACE. Eliminating ACE should be a top priority.
This paper presents a design methodology for a broadband high-efficiency power amplifier (PA). The large available impedance space of the extended continuous Class-GF mode is employed. A novel output matching network of the PA consisting of a rectangular double transmission line structure is proposed to meet impedance requirements. To validate the effectiveness of this structure, a high-efficiency PA operating in 0.8–3.0 GHz is designed using a CGH40010F GaN transistor. The measured results demonstrate that the drain efficiency falls within the range of 63.2%–71.9%, the output power varies from 40.2 to 42.2 dBm, and the gain ranges from 9.4 to 11.3 dB within the frequency band of 0.8–3 GHz. The realized PA exhibits an extremely competitive relative bandwidth of 115.8%.
A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
Environmental exposures are known to be associated with pathogen transmission and immune impairment, but the association of exposures with aetiology and severity of community-acquired pneumonia (CAP) are unclear. A retrospective observational study was conducted at nine hospitals in eight provinces in China from 2014 to 2019. CAP patients were recruited according to inclusion criteria, and respiratory samples were screened for 33 respiratory pathogens using molecular test methods. Sociodemographic, environmental and clinical factors were used to analyze the association with pathogen detection and disease severity by logistic regression models combined with distributed lag nonlinear models. A total of 3323 CAP patients were included, with 709 (21.3%) having severe illness. 2064 (62.1%) patients were positive for at least one pathogen. More severe patients were found in positive group. After adjusting for confounders, particulate matter (PM) 2.5 and 8-h ozone (O3-8h) were significant association at specific lag periods with detection of influenza viruses and Klebsiella pneumoniae respectively. PM10 and carbon monoxide (CO) showed cumulative effect with severe CAP. Pollutants exposures, especially PM, O3-8h, and CO should be considered in pathogen detection and severity of CAP to improve the clinical aetiological and disease severity diagnosis.
Snails and freshwater fish were examined from four ponds in the Meinung township in which Clonorchis sinensis was known to be endemic 18 years ago. No metacercariae were found in 478 Tilapia nilotica, whereas of 451 Ctenopharyngodon idellus examined, 16.2%, 3.3% and 0.9% were found to be infected with Haplorchis pumilio, H. taichui and Clonorchis sinensis, respectively. In addition, there were some unidentified metacercariae in 12.0% of Ctenopharyngodon idellus examined. Overall, no positive correlation between infection rates and sizes of infected fish was shown. Six species of snails were collected in this survey and two frequently-occurring snails, Melanoides tuberculata and Thiara granifera were commonly infected with H. pumilio. Reasons for the prevalence of Haplorchis species and the absence of Clonorchis sinensis in fish and snail hosts in a previously reported endemic area for human clonorchiasis are discussed.
Aiming at alleviating the adverse influence of coupling unmodeled dynamics, actuator faults and external disturbances in the attitude tracking control system of tilt tri-rotor unmanned aerial vehicle (UAVs), a neural network (NN)-based robust adaptive super-twisting sliding mode fault-tolerant control scheme is designed in this paper. Firstly, in order to suppress the unmodeled dynamics coupled with the system states, a dynamic auxiliary signal, exponentially input-to-state practically stability and some special mathematical tools are used. Secondly, benefiting from adaptive control and super-twisting sliding mode control (STSMC), the influence of the unexpected chattering phenomenon of sliding mode control (SMC) and the unknown system parameters can be handled well. Moreover, NNs are employed to estimate and compensate some unknown nonlinear terms decomposed from the system model. Based on a decomposed quadratic Lyapunov function, both the bounded convergence of all signals of the closed-loop system and the stability of the system are proved. Numerical simulations are conducted to demonstrate the effectiveness of the proposed control method for the tilt tri-rotor UAVs.
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.
The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid–fluid two-phase Taylor–Couette turbulence. This quantity consists of contributions from advection, diffusion and two-phase interface, which are closely related to density, viscosity and interfacial tension, respectively. We found from interface-resolved direct numerical simulations that the presence of the two-phase interface consistently produces a positive contribution to the momentum transport and leads to drag enhancement, while decreasing the density and viscosity ratios of the dispersed phase to the continuous phase reduces the contribution of local advection and diffusion terms to the momentum transport, respectively, resulting in drag reduction. Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio work together to compete with the presence of a two-phase interface for achieving drag modulation in fluid–fluid two-phase turbulence.