We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Outline the initial assessment of the severely burned patient.
Determine burn size using the Lund–Browder Diagram.
Assess the airway and the need for intubation.
Determine the fluid requirements for burn resuscitation.
Determine the requirement for escharotomy.
Describe the potential benefits and complications of early burn excision and grafting.
Modern advances in surgery, anesthesia, and critical care have had a significant impact on the treatment of severe burn injuries [1, 2]. Cohorting burn victims in specialized care burn facilities resulted in clinical research studies that led to reductions in hypovolemic shock, respiratory and renal failure, sepsis, and malnutrition. As a result, the burn size that confers a 50 percent probability of death in patients aged 15–45 years has increased from 50 percent total body surface area (TBSA) in 1950 to 80 percent TBSA in 2000 (Table 20.1). Morbidity and mortality following a major burn injury are related to age of the patient, burn size, and the presence of an inhalation injury [3–5]. The greater the burn size the greater the fluid and heat loss to the environment, both of which contribute to organ hypoperfusion and shock. The inflammatory mediator response also increases with burn size as does the degree of immunosuppression. Bacterial colonization increases with the size of the open wound and, in conjunction with the increase in immunosuppression, results in increased risk of life-threatening burn wound infection. Inhalation injury causes pulmonary dysfunction that is exacerbated by the large fluid resuscitation required following major burn injury.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.