We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper proposes a set of novel indices for evaluating the kinematic performance of a 3-RRS (R and S denote revolute and spherical joint respectively, R denotes active joint.), parallel mechanism whose translational and rotational movements are strongly coupled. First, the indices are formulated using the decoupled overall Jacobian matrix, which is developed using coordinate transformation. Then, the influences of the homogeneous dimensionless parameters on these indices are investigated. In addition, the dimension synthesis of the 3-RRS parallel mechanism is carried out by minimizing the mean value of the kinematic performance indices and their standard deviation. The results demonstrate that the established approach facilitates good global kinematic performance of the parallel mechanism.
Fine structure observations were performed by means of electron microscopy on oogenesis and vitellogenesis and the special functions of follicular cells in the Chinese soft-shelled turtle (Pelodiseus sinensis). Histological examination of the ovary showed a well developed lacunae system containing fine granules, fibres or gelatiniform materials with one or two germinal beds dispersed on the dorsal surface of the ovarian cortex. The process of oogenesis comprised 10 consecutive phases according to the morphology of the yolk platelets, follicular cells and zona pellucida (ZP). Electron microscopy of vitellogenesis revealed some of the mitochondria gradually being transformed into yolk granules. In the advanced stage of vitellogenesis, large amounts of rough endoplasmic reticula, Golgiosomes and other cell organelles that are involved in synthesis and secretion were observed in follicular cells. The ZP was formed by microvilli, thus increasing the absorptive surface of the oocyte and facilitating transport of nutrients from the follicular epithelium to the ooplasm. This study demonstrated that the ovaries of members of the Testudinidae share more features with Archosaurs than with Squamates, indicating that these features were phylogenetically conserved in the Archosauria. The present observations suggest that the accumulation of yolk materials was controlled by the intrinsic and extrinsic pathways as well as by the activity of follicular cells. These results might also support a sibling relationship of the Testudinidae with the Archosauria and not with all extant reptiles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.