We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Little is known about the association between iodine nutrition status and bone health. The present study aimed to explore the connection between iodine nutrition status, bone metabolism parameters, and bone disease (osteopenia and osteoporosis). A cross-sectional survey was conducted involving 391, 395, and 421 adults from iodine fortification areas (IFA), iodine adequate areas (IAA), and iodine excess areas (IEA) of China. Iodine nutrition status, bone metabolism parameters and BMD were measured. Our results showed that, in IEA, the urine iodine concentrations (UIC) and serum iodine concentrations (SIC) were significantly higher than in IAA. BMD and Ca2+ levels were significantly different under different iodine nutrition levels and the BMD were negatively correlated with UIC and SIC. Univariate linear regression showed that gender, age, BMI, menopausal status, smoking status, alcohol consumption, UIC, SIC, free thyroxine, TSH, and alkaline phosphatase were associated with BMD. The prevalence of osteopenia was significantly increased in IEA, UIC ≥ 300 µg/l and SIC > 90 µg/l groups. UIC ≥ 300 µg/l and SIC > 90 µg/l were risk factors for BMD T value < –1·0 sd. In conclusion, excess iodine can not only lead to changes in bone metabolism parameters and BMD, but is also a risk factor for osteopenia and osteoporosis.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
The sulphur microbial diet (SMD), a dietary pattern associated with forty-three sulphur-metabolising bacteria, may influence gut microbiota composition and contribute to ageing process through gut-produced hydrogen sulfide (H2S). We aimed to explore the association between SMD and biological age (BA) acceleration, using the cross-sectional study that included 71 579 individuals from the UK Biobank. The SMD score was calculated by multiplying β-coefficients by corresponding serving sizes and summing them, based on dietary data collected using the Oxford WebQ, a 24-hour dietary assessment tool. BA was assessed using Klemerae–Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age refers to the age acceleration (AgeAccel), termed ‘KDMAccel’ and ‘PhenoAgeAccel’. Generalised linear regression was performed. Mediation analyses were used to investigate underlying mediators including BMI and serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio. Following adjustment for multiple variables, a positive association was observed between consuming a dietary pattern with a higher SMD score and both KDMAccel (βQ4 v. Q1 = 0·35, 95 % CI = 0·27, 0·44, P < 0·001) and PhenoAgeAccel (βQ4 v. Q1 = 0·32, 95 % CI = 0·23, 0·41, P < 0·001). Each 1-SD increase in SMD score was positively associated with the acceleration of BA by 7·90 % for KDMAccel (P < 0·001) and 7·80 % for PhenoAgeAccel (P < 0·001). BMI and AST/ALT mediated the association. The stratified analysis revealed stronger accelerated ageing impacts in males and smokers. Our study indicated a higher SMD score is associated with elevated markers of biological ageing, supporting the potential utility of gut microbiota-targeted dietary interventions in attenuating the ageing process.
This study examined global trends in influenza-associated lower respiratory infections (LRIs) deaths from 1990 to 2019 using data from the GBD 2019. The annual percentage change (APC) and average annual percentage change (AAPC) were used to analyze age-standardized death rates (ASDR). Globally, the ASDR of influenza-associated LRIs was 3.29/100,000 in 2019, which was higher in the African region (6.57/100,000) and among adults aged 70 years and older (29.88/100,000). The ASDR of influenza-associated LRIs decreased significantly from 1990 to 2019 (AAPC = −1.88%, P < 0.05). However, it was significantly increased among adults aged 70 years and older during 2017–2019 (APC = 2.31%, P < 0.05), especially in Western Pacific Region and South-East Asia Regions. The ratio of death rates between adults aged 70 years and older and children aged under 5 years increased globally from 1.63 in 1990 to 5.34 in 2019, and the Western Pacific Region experienced the most substantial increase, with the ratio soaring from 1.83 in 1990 to 12.98 in 2019. Despite a decline in the global ASDR of influenza-associated LRIs, it continues to impose a significant burden, particularly in the African, Western Pacific regions and among the elderly population.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
We investigate the natural oscillations of sessile drops with a central trapped bubble on a plane using linear potential flow theory, considering both free and pinned contact lines. The system is governed by the contact angle $\alpha$ and the ratio $\tau$ of inner to outer contact line radii. For bubble-containing (BC) hemispherical drops with free contact lines (referred to as free BC semi-drops), the modes mirror half of those in concentric spherical BC drops due to plane symmetry. These modes are labelled ‘plus’ (with greater inner surface deformation) and ‘minus’ (with greater outer surface deformation). As $\tau \to 0$, minus modes converge to those of bubble-free drops. Results show that varying $\alpha$ from $90^\circ$ or pinning the contact line in free BC semi-drops alters the topology of spectral lines, turning original crossings of spectral lines between minus and plus modes into avoided crossings. This shift causes minus and plus modes to form spectral trends with avoided crossings, maintaining their original spectral shapes. In an avoided crossing, two coupled modes cannot be classified as plus or minus due to their comparable inner and outer surface deformations, resulting in mode beating when both are excited, as confirmed by our direct numerical simulations. This study on the impact of inner bubbles on the spectrum may help in predicting bubble size in opaque sessile drops.
Radiocarbon (14C) measurements play important roles in dating and tracing applications where the isotopic concentration can differ from 0.1 to 106 pMC (percent modern carbon). A liquid scintillation counter cannot provide enough sensitivity when dealing with low-concentration samples of limited amounts over a reasonable time period. Accelerator mass spectroscopy (AMS) measures low-concentrations well but must first do dilution for high-concentration samples, and suffers from high instrument and maintenance costs. Saturated absorption CAvity Ring-down spectroscopy (SCAR) has now been developed into a practical technique with performances close to AMS but at much lower costs. The dynamic range covers 1–105 pMC, and the measurement uncertainties in the range of 0.4–1 pMC can be achieved within 0.5–2.5 hr of operation time. SCAR measures CO2 gases directly without graphitization in sample preparation. The typical sample consumption is ∼1 mg of carbon mass and the time for sample preparation can be as short as 15 min. Applications of SCAR to Suess-effect evaluation, biogenic-component analysis, ancient- and modern-sample dating, food-fraud detection and medicine-metabolism study have all been demonstrated by employing a close-to-automatic sample preparation system.
Silicified microfossils are reported from nine stratigraphic sections of the Ediacaran Doushantuo Formation deposited in shelf margin, slope, and basin environments in Hunan Province of South China. These microfossils include sphaeromorphic and acanthomorphic acritarchs (15 genera and 29 species, including three new acanthomorph species, Bullatosphaera? colliformis n. sp., Eotylotopalla inflata n. sp., and Verrucosphaera? undulata n. sp.), multicellular algae, tubular microfossils, and other problematic forms, representing major fossil groups similar to those from the Doushantuo Formation in more proximal facies (e.g., inner shelf and shelf lagoon). A database of the abundance and occurrences of Doushantuo acanthomorphs is assembled and analyzed using quantitative and data-visualization methods (e.g., rarefaction analysis, non-parametric multidimensional scaling, and network analysis). The results show that, at the genus and species levels, taxonomic richness of Doushantuo acanthomorphs exhibits considerable variation among facies, but this variation is largely due to sampling and taphonomic biases. The results also show that numerous acanthomorph taxa have broad facies distribution, affirming their biostratigraphic value. The analysis confirms that acanthomorphs in the Weng'an biota of shelf margin facies are composed of a mixture of Member II and Member III assemblages of shelf-lagoon facies in the Yangtze Gorges area. The study shows the biostratigraphic potential of acanthomorphs in the establishment of regional biozones using the first appearance datum of widely distributed taxa, highlighting the importance of continuing exploration of under-sampled Doushantuo sections in slope and basinal facies.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Religious celibate monks at the household level possibly reduce all-cause mortality risk among non-monk older Tibetans. This study aims to investigate the association between having a celibate monk in a family and the all-cause mortality of non-monk household members in a Tibetan population. Baseline interviews were conducted for 713 agropastoral Amdo Tibetans aged ≥50 years residing in the eastern Tibetan Plateau from 2016 to 2017. The Cox mixed-effects regression model was used to estimate the association between having a celibate monk in a household and the mortality risk of other non-monk household members. Potential confounders included age, sex, household size, educational attainment, household wealth (measured as the number of yaks), marital status, and annual expenditure. During a median follow-up of 7 years, 54 deaths were identified. The results showed that people living in households with celibate monks had a lower risk of all-cause mortality (hazard ratio: 0.31, 95% confidence interval: 0.14, 0.67) as compared with those living in households without celibate monks. The results remained robust after controlling for confounders, suggesting that religious celibate monks at the household level were associated with lower all-cause mortality among non-monk older household members.
Adaptation to the dynamic environment and variable task sequence is the critical ability for robot navigation and task execution. The Cyclic Networking Rapidly-exploring Random Tree (CNRRT) method is proposed to obtain the optimal path in real time and realize long-term path planning ability in a complex dynamic environment. The cyclic branch is introduced to the acyclic graph of Rapidly-exploring Random Tree (RRT) method, which forms a decentralized path network in the configuration space. An iterative searching strategy is built to search for the optimal path in the network. The branch prune, reconnection, and regrowth processes enable the decentralized network to efficiently respond to dynamic changes in the environment. The CNRRT can search for the real-time optimal path in the dynamic environment, dealing with the configuration and task changes robustly. Besides, the CNRRT is consistent for scenarios with long-term task sequence without significant performance fluctuation. Simulations and real-world comparative experiments verify the effectiveness of the proposed method.
The ubiquitous marine radiocarbon reservoir effect (MRE) constrains the construction of reliable chronologies for marine sediments and the further comparison of paleoclimate records. Different reference values were suggested from various archives. However, it remains unclear how climate and MREs interact. Here we studied two pre-bomb corals from the Hainan Island and Xisha Island in the northern South China Sea (SCS), to examine the relationship between MRE and regional climate change. We find that the MRE from east of Hainan Island is mainly modulated by the Southern Asian Summer Monsoon-induced precipitation (with 11.4% contributed to seawater), rather than wind induced upwelling. In contrast, in the relatively open seawater of Xisha Island, the MRE is dominated by the East Asian Winter Monsoon, with relatively more negative (lower) ΔR values associated with high wind speeds, implying horizontal transport of seawater. The average SCS ΔR value relative to the Marine20 curve is –161±39 14C years. Our finding highlights the essential role of monsoon in regulating the MRE in the northern SCS, in particularly the tight bond between east Asian winter monsoon and regional MRE.
Since 2009, the Chinese government has launched a new health system reform that affected primary healthcare significantly. We aimed to analyze the factors associated with job satisfaction among village clinic doctors since the new healthcare reform, and to provide a reference for the next stage of reform.
Methods
We systematically searched one English (PubMed) and two Chinese literature databases (CNKI and Wanfang Data). Cross-sectional studies containing information related to job satisfaction among village clinic doctors in China were included. The total job satisfaction among village clinic doctors was estimated using a random effects meta-analysis. Differences in study-level characteristics among groups were estimated using subgroup analysis and meta-regression.
Results
We identified 17 cross-sectional studies investigating a total of 28,468 village clinic doctors in China. The pooled job satisfaction value was 0.40 (95% confidence interval [CI]: 0.32, 0.49). The results showed that lower job satisfaction was reported in the period from 2016 to 2020 (0.33, 95% CI: 0.23, 0.42) than in the period from 2010 to 2015 (0.51, 95% CI: 0.33, 0.70). The main factors influencing job satisfaction among village clinic doctors were salary (odds ration [OR] 1.71, 95% CI: 1.23, 2.36), number of training sessions (OR 2.56, 95% CI: 1.68, 3.90), age (OR 3.45, 95% CI: 2.22, 5.35), and level of education (OR 0.68, 95% CI: 0.40, 1.15).
Conclusions
Since the new health system reform, only 40 percent of village clinic doctors in China are satisfied with their work and it is likely this figure will continue to decrease. Those with higher salaries, more training sessions, and greater age had higher job satisfaction. In contrast, village clinic doctors with a higher level of education had lower job satisfaction.
China has a high incidence of birth defects. Tandem mass spectrometry (MS/MS) screening enables rapid detection of multiple inherited metabolic disorders and has been widely promoted globally. This study aimed to conduct a budget impact analysis of replacing phenylketonuria screening with MS/MS by calculating the financial impact of reimbursing the costs of MS/MS screening.
Methods
An Excel-based budget impact analysis model for MS/MS screening was developed. The number of newborns in Shanghai from 2024 to 2026 was estimated using the birth rate trend among the permanent population of Shanghai over the past decade. By integrating clinical screening data, along with the corresponding screening costs and diagnostic fees for the gold standard test, the financial impact of replacing phenylketonuria screening with MS/MS screening was calculated. The screening data for this study was extracted from a tertiary hospital in Shanghai. Demographic data were obtained from statistical websites, while cost data were derived from literature and a tertiary hospital in Shanghai.
Results
The fiscal expenditures for phenylketonuria screening were CNY1.75 million (USD0.25 million), CNY1.65 million (USD0.23 million), and CNY1.56 million (USD0.22 million) for 2024, 2025, and 2026, respectively. In contrast, the corresponding fiscal expenditures for MS/MS were CNY25.23 million (USD3.54 million), CNY23.78 million (USD3.33 million), and CNY22.41 million (USD3.14 million). The additional fiscal expenditure for MS/MS, compared with phenylketonuria screening, was CNY23.48 million (USD3.29 million), CNY22.13 million (USD3.10 million), and CNY20.85 million (USD2.92 million), showing a yearly decreasing trend.
Conclusions
The financial impact of MS/MS screening was controllable. It was recommended that the cost of MS/MS screening in Shanghai be covered by government funding. The promotion of newborn screening using MS/MS deserves priority consideration and publicity in Shanghai, China.
Biped wall-climbing robots (BWCRs) serve as viable alternatives to human workers for inspection and maintenance tasks within three-dimensional (3D) curtain wall environments. However, autonomous climbing in such environments presents significant challenges, particularly related to localization and navigation. This paper presents a pioneering navigation framework tailored for BWCRs to navigate through 3D curtain wall environments. The framework comprises three essential stages: Building Information Model (BIM)-based map extraction, 3D climbing path planning (based on our previous work), and path tracking. An algorithm is developed to extract a detailed 3D map from the BIM, including structural elements such as walls, frames, and ArUco markers. This generated map is input into a proposed path planner to compute a viable climbing motion. For path tracking during actual climbing, an ArUco marker-based global localization method is introduced to estimate the pose of the robot, enabling adjustments to the target foothold by comparing desired and actual poses. The conducted experiments validate the feasibility and efficacy of the proposed navigation framework and associated algorithms, aiming to enhance the autonomous climbing capability of BWCRs.
As a natural clay mineral, halloysite (Hal) possesses a distinctive nanotubular morphology and surface reactivity. Hal calcined at 750°C (Hal750°C; 0.0, 1.0, 2.0, 4.0, 6.0, 8.0 wt.%) was used to replace ground granulated blast furnace slag (GGBFS; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) and fly ash (FA; 50.0, 49.5, 49.0, 48.0, 47.0, 46.0 wt.%) for the preparation of geopolymer in this study. The effects of the replacement ratio of Hal750°C on setting time, compressive strength, flexural strength, chemical composition and microstructure of the geopolymer were investigated. The results indicated that Hal750°C did not significantly alter the setting time. The active SiO2 and Al2O3 generated from Hal750°C participated in the geopolymerization, forming additional geopolymer gel phases (calcium (aluminate) silica hydrate and sodium aluminosilicate hydrate), improving the 28 day compressive strength of the geopolymers. When the amount of Hal750°C was 2.0 wt.%, the 28 day compressive strength of the ternary (GGBFS-FA-Hal750°C-based) geopolymer was 72.9 MPa, 34.8% higher than that of the geopolymer without the addition of Hal750°C. The special nanotubular morphology of residual Hal750°C mainly acted like reinforcing fibres, supplementing the flexural strength of the geopolymer. However, excessive Hal750°C addition (>4.0 wt.%) reduced compressive and flexural strength values due to the low degrees of geopolymerization and the porous microstructure in the ternary geopolymer. These findings demonstrate that the appropriate addition of Hal750°C improved the compressive strength of geopolymers prepared using GGBFS/FA, which provides essential data for future research and supports the utilization of low-value Hal-containing clays in geopolymer preparation.
With the fast development of modern microscopes and bioimaging techniques, an unprecedentedly large amount of imaging data is being generated, stored, analyzed, and shared through networks. The size of the data poses great challenges for current data infrastructure. One common way to reduce the data size is by image compression. This study analyzes multiple classic and deep-learning-based image compression methods, as well as an empirical study on their impact on downstream deep-learning-based image processing models. We used deep-learning-based label-free prediction models (i.e., predicting fluorescent images from bright-field images) as an example downstream task for the comparison and analysis of the impact of image compression. Different compression techniques are compared in compression ratio, image similarity, and, most importantly, the prediction accuracy of label-free models on original and compressed images. We found that artificial intelligence (AI)-based compression techniques largely outperform the classic ones with minimal influence on the downstream 2D label-free tasks. In the end, we hope this study could shed light on the potential of deep-learning-based image compression and raise the awareness of the potential impacts of image compression on downstream deep-learning models for analysis.
The immediate priorities for high-power delivery employing solid-core fibers are balancing the nonlinear effect and beam deterioration. Here, the scheme of tapered multimode fiber is experimentally realized. The tapered multimode fiber, featuring a 15 m (24/200 μm)–10 m (tapered region)–80 m (48/400 μm) profile, guides the laser with a weakly coupled condition. With the input power of 1035 W, the maximum output power over the 105 m delivery is 962 W, corresponding to a high efficiency of over 93% and a nonlinear suppression ratio of over 50 dB. Mode resolving results show high-order-mode contents of less than –30 dB in the whole delivery path, resulting in a high-fidelity delivery with M2 factors of 1.20 and 1.23 for the input and output lasers, respectively. Furthermore, the ultimate limits of delivery lengths for solid-core weakly coupled fibers are discussed. This work provides a valuable reference to reconsider the future boom of high-power laser delivery based on solid-core fibers.