We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nypa fruticans Wurmb is both a relic plant and a true mangrove. In China, wild populations are distributed only on Hainan Island and face significant challenges in regeneration from seedlings. This study explored the underlying causes of recruitment limitation by examining seed morphological traits from three distinct populations (Haikou, Wenchang and Wanning) and analysing seed germination and seedling growth characteristics under varying conditions. The key findings are as follows: fruiting and seed-setting rates for N. fruticans were notably low, standing at only 21 and 40%, respectively. The Wanning population exhibited significantly higher rates compared to the other two populations. Under natural conditions, the germination and seedling emergence rates were also modest, at 36.58 and 22.99%, respectively. The germination and emergence rates of the Wanning population were significantly greater than those of the Haikou and Wenchang populations. Meanwhile, seeds from a single population did not differ in germination rates among three in situ N. fruticans habitats, but seedling emergence rates differed significantly. Optimal conditions for seed germination involved a light intensity of 60%, a salinity of 5‰ and a flooding time of 8 h/day. In natural settings, these three environmental factors fall short of the ideal conditions. The study underscores that light, salinity and flooding are primary factors contributing to the limitations in N. fruticans seedling recruitment. In addition to advocating increased investment in scientific research and technology to address seed source issues, we recommend heightened efforts in habitat restoration, in situ conservation and the optimization of relocation and field return strategies to bolster N. fruticans populations.
The aim of this 4-year follow-up study was to examine the predictive effects of demographics, three types of sexual stigma, three types of self-identity confusion, anxiety, depression, family support and problematic Internet use before the coronavirus disease 2019 (COVID-19) pandemic on new-onset suicide risk and persistent suicide risk in young adult lesbian, gay and bisexual individuals who experienced the COVID-19 pandemic in Taiwan.
Methods
Baseline data were collected from 1,000 lesbian, gay and bisexual individuals in 2018 and 2019. Outcome data on suicide risk were collected again in 2023. The suicide module of the Mini International Neuropsychiatric Interview was used to assess suicide risk in terms of thoughts of death, desire to self-harm, thoughts of suicide, plans for suicide and suicide attempts in the preceding month at the initial and follow-up assessments. Baseline three types of sexual stigma, self-identity disturbance, depression, anxiety and problematic Internet use were used to examine their prediction of new-onset suicide risk and persistent suicide risk at follow-up.
Results
In total, 673 individuals participated in the follow-up survey. Notably, 16.5% of the participants who had no suicide risk at baseline had new-onset suicide risk at follow-up; 46.4% of the participants who had suicide risk at baseline also had suicide risk at follow-up. Participants who were transgender (p = .003), who perceived greater levels of microaggression (p < .001), and who had greater levels of problematic Internet use at baseline (p = .024) were more likely to have new-onset suicide risk at follow-up. Participants who had greater levels of self-identity confusion were more likely to have persistent suicide risk at follow-up (p = .023).
Conclusion
Intervention strategies for reducing suicide risk in lesbian, gay and bisexual individuals should be developed with consideration of the predictors identified in this study.
Motivated by new examples of functional Banach spaces over the unit disk, arising as the symbol spaces in the study of random analytic functions, for which the monomials $\{z^n\}_{n\geq 0}$ exhibit features of an unconditional basis yet they often don’t even form a Schauder basis, we introduce a notion called solid basis for Banach spaces and p-Banach spaces and study its properties. Besides justifying the rich existence of solid bases, we study their relationship with unconditional bases, the weak-star convergence of Taylor polynomials, the problem of a solid span and the curious roles played by c0. The two features of this work are as follows: (1) during the process, we are led to revisit the axioms satisfied by a typical Banach space of analytic functions over the unit disk, leading to a notion of $\mathcal{X}^\mathrm{max}$ (and $\mathcal{X}^\mathrm{min}$), as well as a number of related functorial constructions, which are of independent interests; (2) the main interests of solid basis lie in the case of non-separable (p-)Banach spaces, such as BMOA and the Bloch space instead of VMOA and the little Bloch space.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
A modulational instability of nonlinearly interacting electron whistlers and magnetosonic perturbations is studied in the present paper. For typical parameters, there is no modulational instability. However, modulational instability appears in special cases. For example, when the whistler wavenumber is small enough, there is modulational instability. Its growth rate decreases as the angle between the external magnetic field and the perturbed wave's direction increases, while it increases as the whistler wavenumber increases. It is also found that there is no modulational instability when the whistler wavenumber is larger than a critical value ($k_0 > 0.05$), in which the perturbed wave frequency increases as the angle between the external magnetic field and the perturbed wave's direction increases when the angle between the external magnetic field and the perturbed wave's direction is large enough. Whereas, the perturbed wave frequency first increases as the whistler wavenumber increases, reaches a peak value and then decreases as whistler wavenumber increases.
tDCS application to the DLPFC is associated with the improvements of executive function, memory enhancement, language, processing speed, global cognitive symptoms and apathy over time after treatment. DLB is the second most common form of degenerative dementia. There is no FDA-approved medications that can slow, stop or improve the progression of cognitive declines in DLB. Identifying effective treatments is a critical issue for DLB. In neuropathology, extracelluar α-syn oligomers interfere with the expression of long-term potentiation(LTP), and influence memory and learning. tDCS has been proposed to affect long-term synaptic plasticity through LTP and long-term depression, thereby improving cognitive ability. So far, only two studies have evaluated the effect of tDCS in DLB. In this pilot study, we investigate the effect of tDCS on left DLPFC in DLB.
Method:
Fourteen DLB aged 55-90 years (mean age 76.4, with 4 males and 10 females) were included in a double-blind, randomized, sham-controlled cross over design study. DLB diagnostics is according to DSM-5 criteria. CDR ratings for DLB participants ranged from 0.5 to 2. The active tDCS (or sham) process consists of daily sessions of active tDCS (or sham) for 10 consecutive days. The anodal electrode was placed over the left DLPFC and the cathodal electrode was placed over the right supraorbital area, with a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min in a session. Before and after these treatment sessions, all subjects received a series of neuropsychological tests, including CDR, MMSE, CASI, NPI and WCST. Chi-square test, Wilcoxon signed ranks test and Mann-Whitney U test were used to assess differences in participant demographic characteristics and to compare differences among groups.
Results:
The active tDCS group showed significant improvements on the three items of CASI, ‘language ability’, ‘concentration and calculation’, ‘categorical verbal fluency’, after active stimulations. There is no improvement in MMSE, CASI, NPI and WCST scores in the sham groups.
Conclusion:
These results suggest that left DLPFC anodal, and right deltoid cathodal tDCS, may have some cognitive benefits in DLB. Larger-scale trials are needed to confirm the effect of tDCS in DLB.
Key words: Transcranial Direct Current Stimulation, Dementia with Lewy Bodies, cognitive function, Wisconsin Card Sorting Test, left DLPFC
Transcranial direct current stimulation (tDCS) has been proposed to affect long-term synaptic plasticity through LTP and LTD, thereby improving cognitive ability. In pathology, the amyloid deposits in AD disrupts the balance between long-term potentiation (LTP) and long-term depression (LTD) of neuronal cells and synaptic plasticity. An increasing number of studies have been concluded a positive therapeutic effect on cognition in AD. In brain stimulation, dorsolateral prefrontal cortex (DLPFC) was associated with improvements in memory enhancement, language, processing speed, global cognitive symptoms, and apathy over a period of treatment. Theoretically, the aftereffect of tDCS would need to be re-stimulated by tDCS to maintain its delayed plastic response benefits. In this pilot study, we investigate the maintenance effects of continuing tDCS at three different times, weekly, every two weeks, and every four weeks, for 12 weeks.
Method:
Twenty-eight AD participants aged 55-90 years were enrolled (mean age 72.7, 77.3, and 76.2 in the three groups - maintained weekly (7 cases), biweekly (9 cases) and every 4 weeks (12 cases)). The anodal electrode was placed over the left dorsal lateral prefrontal cortex and the cathodal electrode was placed over the right supraorbital area. In each active session, we applied a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min. All subjects received a series of neuropsychological assessments including CDR, MMSE, CASI and WCST at (1) baseline, (2) post-10sessions of tDCS (in 2weeks), and (3) post-maintenance phase (total of 12 weeks). Chi-square tests, Wilcoxon signed rank tests and Mann-Whitney U tests were used to assess differences in participant demographic characteristics and to compare differences in test scores between groups.
Results:
After 10 sessions of tDCS stimulations, the total CASI scores in the 1-week group improved significantly from baseline to 2 weeks. However, there are no significant difference in MMSE, CASI or WCST between baseline and after maintain phase stimulations in each group.
Conclusion:
Although tDCS has a positive effect in AD, it is recommended to prolong the number of tDCS stimulations, such as 20 sessions in 4 weeks.
There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression.
Methods
In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis.
Results
In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset.
Conclusions
These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium. A novel measurement method of plasma channel density profiles has been employed, where the role of plasma channels guiding the advantages of lasers has shown strong appeal. Here, we have studied the high-order transverse plasma density profile distribution using a channel-guided laser, and made detailed measurements of its evolution under various parameters. The paraxial wave equation in a plasma channel with high-order density profile components is analyzed, and the approximate propagation process based on the Gaussian profile laser is obtained on this basis, which agrees well with the simulation under phase conditions. In the experiments, by measuring the integrated transverse laser intensities at the outlet of the channels, the radial quartic density profiles of the plasma channels have been obtained. By precisely synchronizing the detection laser pulses and the plasma channels at various moments, the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile, and the high-order component is indicated as an exponential decline tendency over time. Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters. It can be found that the discharge voltages and currents are positive factors quickening the evolution, while the electron-ion heating, capillary radii and pressures are negative ones. One plausible explanation is that quartic profile contributions may be linked to plasma heating. This work helps one to understand the mechanisms of the formation, the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters. It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.
In this study, a novel, cost-effective miniaturized tag antenna was developed for applications on the human body. To achieve impedance matching with the complex conjugate impedance of the Monza-4 tag chip (7.17–j74.22 Ω at 915 MHz), the proposed structure was configured by coarsely tuning the positions of vias and fine-tuning the small gaps of its coupled patches. For further reducing the profile and dimensions of the antenna, a design technique based on the three-dimensional dipole antenna current distribution was used. The proposed antenna configuration was not only miniaturized but also achieved a long stable reading distance (>5.0 m) and a wide impedance bandwidth of 71 MHz or 7.65% (covering the ultrahigh frequency radio frequency identification ranges in most regions), regardless of the location of the tag on the human body. Experiments were conducted to validate the simulated results, and adequate agreement was found between the simulated results and the measured results.
The transport phenomena of dust particles have been widely observed in fusion plasmas. In this article, we report the observations of dust fragmentations in the Experimental Advanced Superconducting Tokamak (EAST). A dust particle splits into two daughter particles and their motions are recorded before and after the breakup with a fast video camera. The trajectories of the daughter particles in the experiment are consistent with equation-of-motion simulations. The stability of a rotating charged particle in the plasma is briefly discussed.
Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders.
Methods
Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed.
Results
Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network.
Conclusions
These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.
Hormone-sensitive lipase (HSL) is one of the rate-determining enzymes in the hydrolysis of TAG, playing a crucial role in lipid metabolism. However, the role of HSL-mediated lipolysis in systemic nutrient homoeostasis has not been intensively understood. Therefore, we used CRISPR/Cas9 technique and Hsl inhibitor (HSL-IN-1) to establish hsla-deficient (hsla-/-) and Hsl-inhibited zebrafish models, respectively. As a result, the hsla-/- zebrafish showed retarded growth and reduced oxygen consumption rate, accompanied with higher mRNA expression of the genes related to inflammation and apoptosis in liver and muscle. Furthermore, hsla-/- and HSL-IN-1-treated zebrafish both exhibited severe fat deposition, whereas their expressions of the genes related to lipolysis and fatty acid oxidation were markedly reduced. The TLC results also showed that the dysfunction of Hsl changed the whole-body lipid profile, including increasing the content of TG and decreasing the proportion of phospholipids. In addition, the systemic metabolic pattern was remodelled in hsla-/- and HSL-IN-1-treated zebrafish. The dysfunction of Hsl lowered the glycogen content in liver and muscle and enhanced the utilisation of glucose plus the expressions of glucose transporter and glycolysis genes. Besides, the whole-body protein content had significantly decreased in the hsla-/- and HSL-IN-1-treated zebrafish, accompanied with the lower activation of the mTOR pathway and enhanced protein and amino acid catabolism. Taken together, Hsl plays an essential role in energy homoeostasis, and its dysfunction would cause the disturbance of lipid catabolism but enhanced breakdown of glycogen and protein for energy compensation.
Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis.
Methods
T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges.
Results
As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms.
Conclusions
In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.
Pregnancy is a complex biological process. The establishment and maintenance of foetal–maternal interface are pivotal events. Decidual immune cells and inflammatory cytokines play indispensable roles in the foetal–maternal interface. The disfunction of decidual immune cells leads to adverse pregnancy outcome. Tumour necrosis factor (TNF)-α, a common inflammatory cytokine, has critical roles in different stages of normal pregnancy process. However, the relationship between the disorder of TNF-α and adverse pregnancy outcomes, including preeclampsia (PE), intrauterine growth restriction (IUGR), spontaneous abortion (SA), preterm birth and so on, is still indefinite. In this review, we thoroughly reviewed the effect of TNF-α disorder on pathological conditions. Moreover, we summarized the reports about the adverse pregnancy outcomes (PE, IUGR, SA and preterm birth) of using anti-TNF-α drugs (infliximab, etanercept and adalimumab, certolizumab and golimumab) currently in the clinical studies. Overall, IUGR, SA and preterm birth are the most common adverse pregnancy outcomes of anti-TNF-α drugs. Our review may provide insight for the immunological treatment of pregnancy-related complication, and help practitioners make informed decisions based on the current evidences.
This study evaluated the association between inflammatory diets as measured by the Dietary Inflammatory index (DII), inflammation biomarkers and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (±3 years), week of gestation (±1 week) and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a seventy-nine item semiquantitative FFQ. Inflammatory biomarkers were analysed by ELISA kits. The mean E-DII scores were −0·65 ± 1·58 for cases and −1·19 ± 1·47 for controls (P value < 0·001). E-DII scores positively correlated with interferon-γ (rs = 0·194, P value = 0·001) and IL-4 (rs = 0·135, P value = 0·021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (Ptrend < 0·001). The highest tertile of E-DII was 2·18 times the lowest tertiles (95 % CI = 1·52, 3·13). The odds of preeclampsia increased by 30 % (95 % CI = 18 %, 43 %, P value < 0·001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1·07, 95 % CI = 1·03, 1·11), IL-4 (OR = 1·26, 95 % CI = 1·03, 1·54) and transforming growth factor beta (TGF-β) (OR = 1·17, 95 % CI = 1·06, 1·29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
While the negative consequences of insomnia are well-documented, a strengths-based understanding of how sleep can increase health promotion is still emerging and much-needed. Correlational evidence has connected sleep and insomnia to resilience; however, this relationship has not yet been experimentally tested. This study examined resilience as a mediator of treatment outcomes in a randomized clinical trial with insomnia patients.
Methods
Participants were randomized to either digital cognitive behavioral therapy for insomnia (dCBT-I; n = 358) or sleep education control (n = 300), and assessed at pre-treatment, post-treatment, and 1-year follow-up. A structural equation modeling framework was utilized to test resilience as a mediator of insomnia and depression. Risk for insomnia and depression was also tested in the model, operationalized as a latent factor with sleep reactivity, stress, and rumination as indicators (aligned with the 3-P model). Sensitivity analyses tested the impact of change in resilience on the insomnia relapse and incident depression at 1-year follow-up.
Results
dCBT-I resulted in greater improvements in resilience compared to the sleep education control. Furthermore, improved resilience following dCBT-I lowered latent risk, which was further associated with reduced insomnia and depression at 1-year follow-up. Sensitivity analyses indicated that each point improvement in resilience following treatment reduced the odds of insomnia relapse and incident depression 1 year later by 76% and 65%, respectively.
Conclusions
Improved resilience is likely a contributing mechanism to treatment gains following insomnia therapy, which may then reduce longer-term risk for insomnia relapse and depression.
To explore and develop effective treatments is crucial for patients with Alzheimer’s dementia (AD). In pathology, the amyloid deposits of AD result in disruption of the balance between long-term potentiation (LTP) and long-term depression (LTD) of neuronal cells and synaptic plasticity. Transcranial direct current stimulation (tDCS) has been proposed to affect long-term synaptic plasticity through LTP and LTD, thereby improving cognitive ability. Although an increasing number of studies have been concluded a positive therapeutic effect on cognition in AD, tDCS studies to date are limited on exploring the duration of its efficacy. In this pilot study, we investigate the effects of tDCS in AD and verify its extending beneficial effects for 3 months follow-up period after the end of stimulation.
Method:
34 AD participants aged 55-90 years (mean age 75.9 (66-86)) were included in a double-blind, randomized, sham-controlled crossover study. All participants were randomly assigned to receive 10 consecutive daily sessions of active tDCS (or sham) and switched groups 3 months later. The anodal electrode was on the left dorsal lateral prefrontal cortex and the cathodal electrode was on the right supraorbital area. In each active session, we applied a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min in the active group. All subjects received a series of neuropsychological assessments including CDR, MMSE, CASI and WCST at baseline and in 2 weeks, 4 weeks, and 12 weeks post-tDCS (or sham) 10 sessions. Chi-square tests, Wilcoxon signed rank tests and Mann-Whitney U tests were used to assess the differences in participant demographic characteristics and to compare the differences of test scores between groups.
Results:
The active tDCS group showed significant improvements on CASI total scores from baseline to 2-weeks, 1-month and 3-months after active stimulations, though the improvement declined over time. There are also different presentations in total correct items, conceptual level responses, failure to maintain sets of WCST between active tDCS and sham groups. There is no difference in MMSE, CASI and WCST scores in the sham groups.
Conclusion:
These results suggest a long term-beneficial effects of tDCS in AD.