We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have often observed dementia symptoms or severe neurocognitive decline in the long-term course of schizophrenia. While there are epidemiological reports that patients with schizophrenia are at an increased risk of developing dementia, there are also neuropathological reports that the prevalence of Alzheimer’s disease (AD) in schizophrenia is similar to that in normal controls. It is difficult to distinguish, based solely on the clinical symptoms, whether the remarkable dementia symptoms and cognitive decline seen in elderly schizophrenia are due to the course of the disease itself or a concomitant neurocognitive disease. Neuropathological observation is needed for discrimination.
Methods:
We conducted a neuropathological search on three cases of schizophrenia that developed cognitive decline or dementia symptoms after a long illness course of schizophrenia. The clinical symptoms of total disease course were confirmed retrospectively in the medical record. We have evaluated neuropathological diagnosis based on not only Hematoxylin–Eosin and Klüver–Barrera staining specimens but also immunohistochemical stained specimens including tau, β-amyloid, pTDP-43 and α-synuclein protein throughout clinicopathological conference with multiple neuropathologists and psychiatrists.
Results:
The three cases showed no significant pathological findings or preclinical degenerative findings, and poor findings consistent with symptoms of dementia were noted.
Conclusion:
Although the biological background of dementia symptoms in elderly schizophrenic patients is still unclear, regarding the brain capacity/cognitive reserve ability, preclinical neurodegeneration changes in combination with certain brain vulnerabilities due to schizophrenia itself are thought to induce dementia syndrome and severe cognitive decline.
Recent studies based on the neuroimaging analysis, genomic analysis and transcriptome analysis of the postmortem brain suggest that the pathogenesis of schizophrenia is related to myelin-oligodendrocyte abnormalities. However, no serious neuropathological investigation of this protein in the schizophrenic brain has yet been performed. In this study, to confirm the change in neuropathological findings due to the pathogenesis of this disease, we observed the expression of myelin-oligodendrocyte directly in the brain tissue of schizophrenia patients.
Methods
Myelin oligodendrocyte glycoprotein (MOG) was evaluated in the cortex of the superior temporal gyrus (STG) and the hippocampus in 10 schizophrenic and nine age- and sex-matched normal control postmortem brains.
Results
The expression of MOG was significantly lower in the middle layer of the neocortex of the STG and stratum lucidum of CA3 in the hippocampus in the long-term schizophrenic brains (patients with ≥30 years of illness duration) than in the age-matched controls. Furthermore, the thickness of MOG-positive fibre-like structures was significantly lower in both regions of the long-term schizophrenic brains than in the age-matched controls.
Conclusion
These findings suggest that a long duration of illness has a marked effect on the expression of MOG in these regions, and that myelin-oligodendrocyte abnormalities in these regions may be related to the progressive pathophysiology of schizophrenia.
The precise aetiology of schizophrenia remains unclear. The neurodevelopmental hypothesis of schizophrenia has been proposed based on the accumulation of genomic or neuroimaging studies.
Objective
In this study, we examined the catecholaminergic neuronal networks in the frontal cortices of disrupted-in-schizophrenia 1 (DISC1) knockout (KO) mice, which are considered to be a useful model of schizophrenia.
Methods
Six DISC1 homozygous KO mice and six age-matched littermates were used. The animals’ brains were cut into 20-μm-thick slices, which were then immunohistochemically stained using an anti-tyrosine hydroxylase (TH) monoclonal antibody.
Results
The TH-immunopositive fibres detected in the orbitofrontal cortices of the DISC1 KO mice were significantly shorter than those seen in the wild-type mice.
Conclusion
These neuropathological findings indicate that the hypofrontal symptoms of schizophrenia are associated with higher mental function deficiencies or cognitive dysfunction such as a loss of working memory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.