We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Airway management is a vital component of administering anesthesia, allowing for the exchange of gases between the patient and the surrounding atmosphere. Difficult or unsuccessful management of the airway is a significant source of anesthesia-related morbidity and mortality [1]. As such, it is important for anesthesia providers to be adept at all aspects of managing the airway. A thorough understanding of the pertinent anatomy and physiology, the ability to use clinical evaluation to identify potential difficulties, and a mastery of interventional techniques and procedures are crucial to safe and effective airway management. This chapter presents a comprehensive overview of the elements related to effective airway management.
A regional block, also known as a localized block, is a type of anesthetic that blocks nerve transmission to prevent or alleviate pain. Regional anesthesia is the process of injecting an anesthetic substance into a peripheral nerve and inhibiting transmission to avoid or treat pain. It is distinct from general anesthesia in that it does not alter the patient’s level of awareness to alleviate pain. There are numerous advantages of regional anesthesia over general anesthesia, including avoidance of airway manipulation, lower dosages, fewer systemic medication adverse effects, shorter recovery period, and considerably less discomfort following surgery.
Selection of the anesthetic technique to be employed during a procedure begins during the preoperative evaluation with consideration of factors such as the patient’s comorbidities and preferences and the type of procedure to be performed. Oftentimes, general anesthesia is not necessary and the procedure can be performed under a lesser depth of sedation. Procedural sedation is a technique that allows the patient to tolerate the discomfort of a procedure while still maintaining cardiorespiratory function. In order to accomplish this, the anesthesia provider administers sedative, dissociative, and/or analgesic agents alone or in combination [1].
Preoperatively, the patient will transition from different depths of anesthesia, including the levels of sedation, to general anesthesia (GA). Sedation is a continuum of symptoms that range from minimal symptoms of anxiolysis to symptoms of moderate and deep sedation. Moderate sedation is defined by the patient remaining asleep, but being easily arousable. Deep sedation is achieved when the patient is only arousable to painful stimulation. GA refers to medically induced loss of consciousness with concurrent loss of protective reflexes and skeletal muscle relaxation. GA is most commonly achieved via induction with intravenous sedatives and analgesics, followed by maintenance of volatile anesthetics [1]. Table 9.1 lists the depths of anesthesia and associated characteristics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.