We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mixed Reality enables individuals to visualise and interact with artefacts and environments through a combination of physical and virtual assets. It has received increased interest from the design community as a means to accelerate, enrich and enhance prototyping activities. This article concerns MR’s ability to deceive an individual through the combination of virtual and physical assets and their underlying traits (e.g., mass, size), and a user’s cognitive ability to ‘join the dots’. If properly implemented, MR could save time and resources by reducing the required prototype fidelity and the need to fully realise variants. However, there is a gap in understanding how the traits of physical and virtual assets and cognition combine to form reality. This article presents a study investigated the role mass, virtual and physical model size played on users perception of an MR prototype. The relative impact of these factors was determined by varying these parameters and assessing the user’s perceived change. The key finding from this study was that the virtual model size had a far greater influence on prototype perceived by the user. This suggests that the required physical fidelity of an MR prototype can be lower than the virtual. Furthermore, exploring size design variants can be achieved exclusively through changes to the virtual model.
User-testing is crucial in modern product design. The perception-centric design philosophy aims to cut costs and improve responses to low-cost prototypes by including aspects like thermal properties, texture, weight, sound, and haptic feedback. This paper introduces a set of considerations for integrating low-cost vibrotactile haptics into prototypes. Derived using an action-based research process, it addresses product characterisation, actuation, control, and integration. Multi-sensory prototypes in early-stage design could be vital for the sustainable prototyping of the future.
Hands are the sensors and actuators for many design tasks. While several tools exist to capture human interaction and pose, many are expensive and require intrusive measurement devices to be placed on participants and often takes them out of the natural working environment. This paper reports a novel workflow that combines computer vision, several Machine Learning algorithms, and geometric transformations to provide a low-cost non-intrusive means of spatially tracking hands. A ±3mm position accuracy was attained across a series of 3-dimensional follow the path studies.
Underpinning much work on the use of Virtual Reality technologies in design prototyping, is the need to reliably track the 3D position of a physical object in real space, then allowing synchronisation with a digital counterpart. With many tracking methods requiring changes to object geometry, this work develops and benchmarks four minimally invasiveness 6 DoF tracking approaches, before discussing their use in a prototyping context. Results show that using AI and point cloud methods, accuracies of 20mm at 20Hz are achievable on low-end hardware with no alterations to the prototype needed.
With recent advancements in Virtual reality (VR), 3D design in VR has gained significant interest from both academia and industries. However, the development of these VR CAD tools is either skewed towards the creative industry or simply mimicking conventional CAD. This paper presents three different tools, analyzes them, and compares their capabilities over various performance parameters. The paper finally suggests where these tools can be used in the design process and some critical pathways for developing VR-based CAD modeling software for practical use in the engineering design industry.
Immersive reality (XR) technologies, particularly Mixed Reality (MR), offer promising opportunities for enhancing design prototyping. While recent studies often focus on Virtual Reality this work explores the application of MR, where focus lies on interlinking both the physical and digital to maximise benefit. Following a review of XR in design, a descriptive framework is presented to characterise MR prototyping. Two case studies are then presented to highlight the value of bridging the physical and digitalf worlds, before directions for further research in MR-based prototyping are outlined.
Advancements in prototyping technologies – haptics and extended reality – are creating exciting new environments to enhance stakeholder and user interaction with design concepts. These interactions can now occur earlier in the design process, transforming feedback mechanisms resulting in greater and faster iterations. This is essential for bringing right-first-time products to market as quickly as possible.
While existing feedback tools, such as speak-aloud, surveys and/or questionnaires, are a useful means for capturing user feedback and reflections on interactions, there is a desire to explicitly map user feedback to their physical prototype interaction. Over the past decade, several hand-tracking tools have been developed that can, in principle, capture product user interaction.
In this paper, we explore the capability of the LeapMotion Controller, MediaPipe and Manus Prime X Haptic gloves to capture user interaction with prototypes. A broad perspective of capability is adopted, including accuracy as well as the practical aspects of knowledge, skills, and ease of use. In this study, challenges in accuracy, occlusion and data processing were elicited in the capture and translation of user interaction into design insights.
In this study, we used genomic sequencing to identify variants of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in healthcare workers with coronavirus disease 2019 (COVID-19) after receiving a booster vaccination. We compared symptoms, comorbidities, exposure risks, and vaccine history between the variants. Postbooster COVID-19 cases increased as the SARS-CoV-2 omicron variant predominated.
The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates’ mental health and patient outcomes.
Method
Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15–20 min modules, totaling 1.5–2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments.
Results
Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = −0.41), peritraumatic distress (d = −0.24), and experiential avoidance (d = −0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = −0.94), depression (d = −0.23), anxiety (d = −0.29), and experiential avoidance (d = −0.30).
Significance of results
Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial.
Transient, steady and oscillatory flows in a $180^{\circ }$ curved pipe are investigated both numerically and experimentally to understand secondary flow vortex formation and interactions. The results of numerical simulations and particle image velocimetry experiments are highly correlated, with a low error. To enable simulations in a smaller domain with shorter inlet section, an analytical solution for the unsteady Navier–Stokes equation is obtained with non-zero initial conditions to provide physical velocity profiles for the simulations. The vorticity transport equation is studied and its terms are balanced to find the mechanism of vorticity transfer to structures in the curved pipe. Several vortices are identified via various vortex identification (ID) methods and their results are compared. Isosurfaces of the $\unicode[STIX]{x1D706}_{2}$ vortex ID are used to explain the temporal and spatial evolution of vortices in the curved pipe. Eigenvalues and eigenvectors of the velocity gradient tensor are calculated for the swirling strength vortex ID method, which also determines vortex axis orientation. The classical Lyne vortex in oscillatory flow with an inviscid core is also revisited and its results are compared with the transient and steady flows. These in-depth analyses provide a better understanding and characterization of vortical structures in the curved pipe flow. Our findings show that, although there are some visual similarities between cross-sectional views of steady/transient flows and oscillatory flows, the structure herein designated as Lyne-type vortex detected in the cross-sections (under steady, transient and pulsatile flows) is not the same as the classical Lyne vortex pair (in oscillatory flows).
Motivated by the dynamics within terrestrial bodies, we consider a rotating, strongly thermally stratified fluid within a spherical shell subject to a prescribed laterally inhomogeneous heat-flux condition at the outer boundary. Using a numerical model, we explore a broad range of three key dimensionless numbers: a thermal stratification parameter (the relative size of boundary temperature gradients to imposed vertical temperature gradients), $10^{-3}\leqslant S\leqslant 10^{4}$, a buoyancy parameter (the strength of applied boundary heat-flux anomalies), $10^{-2}\leqslant B\leqslant 10^{6}$, and the Ekman number (ratio of viscous to Coriolis forces), $10^{-6}\leqslant E\leqslant 10^{-4}$. We find both steady and time-dependent solutions and delineate the regime boundaries. We focus on steady-state solutions, for which a clear transition is found between a low $S$ regime, in which buoyancy dominates the dynamics, and a high $S$ regime, in which stratification dominates. For the low-$S$ regime, we find that the characteristic flow speed scales as $B^{2/3}$, whereas for high-$S$, the radial and horizontal velocities scale respectively as $u_{r}\sim S^{-1}$, $u_{h}\sim S^{-3/4}B^{1/4}$ and are confined within a thin layer of depth $(SB)^{-1/4}$ at the outer edge of the domain. For the Earth, if lower mantle heterogeneous structure is due principally to chemical anomalies, we estimate that the core is in the high-$S$ regime and steady flows arising from strong outer boundary thermal anomalies cannot penetrate the stable layer. However, if the mantle heterogeneities are due to thermal anomalies and the heat-flux variation is large, the core will be in a low-$S$ regime in which the stable layer is likely penetrated by boundary-driven flows.
Studies have shown that when religious and spiritual concerns are addressed by the medical team, patients are more satisfied with their care and have lower healthcare costs. However, little is known about how intensive care unit (ICU) clinicians address these concerns. The objective of this study was to determine how ICU clinicians address the religious and spiritual needs of patients and families.
Method
We performed a cross-sectional survey study of ICU physicians, nurses, and advance practice providers (APPs) to understand their attitudes and beliefs about addressing the religious and spiritual needs of ICU patients and families. Each question was designed on a 4- to 5-point Likert scale. A total of 219 surveys were collected over a 4-month period.
Result
A majority of clinicians agreed that it is their responsibility to address the religious/spiritual needs of patients. A total of 79% of attendings, 74% of fellows, 89% of nurses, and 83% of APPs agreed with this statement. ICU clinicians also feel comfortable talking to patients about their religious/spiritual concerns. In practice, few clinicians frequently address religious/spiritual concerns. Only 14% of attendings, 3% of fellows, 26% of nurses, and 17% of APPs say they frequently ask patients about their religious/spiritual needs.
Significance of results
This study shows that ICU clinicians see it as their role to address the religious and spiritual needs of their patients, and report feeling comfortable talking about these issues. Despite this, a minority of clinicians regularly address religious and spiritual needs in clinical practice. This highlights a potential deficit in comprehensive critical care as outlined by many national guidelines.
Acute flank pain from suspected urolithiasis is a common presenting complaint in the Emergency Department. Multiple computed tomography (CT) has traditionally been the standard imaging modality used to diagnose obstructive kidney stones, however point of care ultrasound (PoCUS) can play an important role in the diagnostic algorithm and risk stratification of acute flank pain. Here, we present the case of a 29-year-old female with suspected urolithiasis, who underwent PoCUS that revealed right-sided hydronephrosis and normal left kidney, bladder, and aorta. A subsequent KUB was negative. As the clinical course failed to improve with therapy, an abdominal and pelvic CT was ordered revealing a 5 mm distal obstructing ureteric calculus at the right vesico-ureteric junction and another 5 mm left mid ureteric calculus. To the best of our knowledge, this is the first case in which a patient presenting with acute right-sided flank pain demonstrated unilateral hydronephrosis on PoCUS, but had clinically significant bilateral ureteric stones on CT. Emergency physicians who employ PoCUS for evaluation of flank pain must be aware of its benefits and drawbacks and how they apply to each patient. As such, we have developed a script emergency physicians can use for shared decision-making with renal colic patients when deciding on the appropriate imaging modality.
Recent evidence suggests that exercise plays a role in cognition and that the posterior cingulate cortex (PCC) can be divided into dorsal and ventral subregions based on distinct connectivity patterns.
Aims
To examine the effect of physical activity and division of the PCC on brain functional connectivity measures in subjective memory complainers (SMC) carrying the epsilon 4 allele of apolipoprotein E (APOE 4) allele.
Method
Participants were 22 SMC carrying the APOE ɛ4 allele (ɛ4+; mean age 72.18 years) and 58 SMC non-carriers (ɛ4–; mean age 72.79 years). Connectivity of four dorsal and ventral seeds was examined. Relationships between PCC connectivity and physical activity measures were explored.
Results
ɛ4+ individuals showed increased connectivity between the dorsal PCC and dorsolateral prefrontal cortex, and the ventral PCC and supplementary motor area (SMA). Greater levels of physical activity correlated with the magnitude of ventral PCC–SMA connectivity.
Conclusions
The results provide the first evidence that ɛ4+ individuals at increased risk of cognitive decline show distinct alterations in dorsal and ventral PCC functional connectivity.
Regulatory impact analyses (RIAs) weigh the benefits of regulations against the burdens they impose and are invaluable tools for informing decision makers. We offer 10 tips for nonspecialist policymakers and interested stakeholders who will be reading RIAs as consumers.
1. Core problem: Determine whether the RIA identifies the core problem (compelling public need) the regulation is intended to address.
2. Alternatives: Look for an objective, policy-neutral evaluation of the relative merits of reasonable alternatives.
3. Baseline: Check whether the RIA presents a reasonable “counterfactual” against which benefits and costs are measured.
4. Increments: Evaluate whether totals and averages obscure relevant distinctions and trade-offs.
5. Uncertainty: Recognize that all estimates involve uncertainty, and ask what effect key assumptions, data, and models have on those estimates.
6. Transparency: Look for transparency and objectivity of analytical inputs.
7. Benefits: Examine how projected benefits relate to stated objectives.
8. Costs: Understand what costs are included.
9. Distribution: Consider how benefits and costs are distributed.
10. Symmetrical treatment: Ensure that benefits and costs are presented symmetrically.
The origin and significance of pimple mounds (low, elliptical to circular dune-like features found across much of the south-central United States) have been debated for nearly two centuries. We cored pimple mounds at four sites spanning the Ozark Plateau, Arkansas River Valley, and Gulf of Mexico Coastal Plain and found that these mounds have a regionally consistent textural asymmetry such that there is a significant excess of coarse-grained sediment within their northwest flanks. We interpret this asymmetry as evidence of an eolian depositional origin of these mounds and conclude they are relict nebkhas (coppice dunes) deposited during protracted middle to late Holocene droughts. These four mounds yield optically stimulated luminescence ages between 2400 and 700 yr that correlate with well-documented periods of eolian activity and droughts on the southern Great Plains, including the Medieval Climate Anomaly. We conclude vegetation loss during extended droughts led to local eolian deflation and pimple mound deposition. These mounds reflect landscape response to multi-decadal droughts for the south-central U.S. The spatial extent of pimple mounds across this region further underscores the severity and duration of late Holocene droughts, which were significantly greater than historic droughts.
Describe the epidemiology of healthcare-related (ie, healthcare-associated and hospital-acquired) pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) among hospitalized patients in community hospitals.
Design.
Retrospective cohort study.
Setting.
Twenty-four community hospitals in the southeastern United States affiliated with the Duke Infection Control Outreach Network (median size, 211 beds; range, 103–658 beds).
Methods.
Adult patients with healthcare-related MRSA pneumonia admitted to study hospitals from January 1, 2008, to December 31, 2012, were identified using surveillance data. Seasonal and annual incidence rates (cases per 100,000 patient-days) were estimated using generalized estimating equation models. Characteristics of community-onset and hospital-onset cases were compared.
Results.
A total of 1,048 cases of healthcare-related pneumonia due to MRSA were observed during 5,863,941 patient-days. The annual incidence rate of healthcare-related MRSA pneumonia increased from 11.3 cases per 100,000 patient-days (95% confidence interval [CI], 6.8–18.7) in 2008 to 15.5 cases per 100,000 patient-days (95% CI, 8.4–28.5) in 2012 (P = .055). The incidence rate was highest in winter months and lowest in summer months (15.4 vs 11.1 cases per 100,000 patient-days; incidence rate ratio, 1.39 [95% CI, 1.06–1.82]; P = .016). A total of 814 cases (77.7%) were community-onset healthcare-associated pneumonia cases; only 49 cases (4.7%) were ventilator-associated cases. Of 811 patients whose disposition was known, 240 (29.6%) died during hospitalization or were discharged to hospice.
Conclusions.
From 2008 through 2012, the incidence of healthcare-related MRSA pneumonia among patients who were admitted to a large network of community hospitals increased, despite the decreasing incidence of invasive MRSA infections nationwide. Additional study is warranted to evaluate trends in this important and potentially modifiable public health problem.
Infect Control Hosp Epidemiol 2014;35(12):1452–1457
Mennonite Plautdietsch (ISO 639–3: pdt) is a West Germanic (Indo-European) language belonging to the Low Prussian (Niederpreußisch) subgroup of Eastern Low German (Ostniederdeutsch), a continuum of closely related varieties spoken in northern Poland until the Second World War (Ziesemer 1924, Mitzka 1930, Thiessen 1963). Although its genetic affiliation with these other, now-moribund Polish varieties is uncontested, Mennonite Plautdietsch represents an exceptional member of this grouping. It was adopted as the language of in-group communication by Mennonites escaping religious persecution in northwestern and central Europe during the mid-sixteenth century, and later accompanied these pacifist Anabaptist Christians over several successive generations of emigration and exile through Poland, Ukraine, and parts of the Russian Empire. As a result of this extensive migration history, Mennonite Plautdietsch is spoken today in diasporic speech communities on four continents and in over a dozen countries by an estimated 300,000 people, primarily descendants of these so-called Russian Mennonites (Epp 1993, Lewis 2009).
I discuss recent work in which we construct models of poststarburst galaxies by combining fully three-dimensional hydrodynamic simulations of galaxy mergers with radiative transfer calculations of dust attenuation. The poststarburst signatures can occur shortly after a bright starburst phase in gas-rich mergers, and thus offer a unique opportunity to study the formation of bulges and the effects of feedback. Several additional applications of spatially-resolved spectroscopic models of interacting galaxies include multi-wavelength studies of AGN/starburst diagnostics, mock integral field unit data to interpret the evolution of ULIRGs, and the ‘Green Valley’.