We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When multiple charities, social programs and community projects simultaneously vie for funding, donors risk mis-coordinating their contributions leading to an inefficient distribution of funding across projects. Community chests and other intermediary organizations facilitate coordination among donors and reduce such risks. To study this, we extend a threshold public goods framework to allow donors to contribute through an intermediary rather than directly to the public goods. Through a series of experiments, we show that the presence of an intermediary increases public good success and subjects’ earnings only when the intermediary is formally committed to direct donations to socially beneficial goods. Without such a restriction, the presence of an intermediary has a negative impact, complicating the donation environment, decreasing contributions and public good success.
In Europe, organic food must comply with specific regulations which do not include nutritional criteria. The ability of organic food to meet the nutritional needs of children is not assessed. This narrative review discusses the nutritional composition (macronutrients, micronutrients) of organic food compared with conventional products and its clinical relevance with a paediatric focus, as well as the health impact of these differences and of contaminants which interfere with metabolism. Other potential differences, particularly regarding the direct/indirect exposure to other contaminants in conventional food, are not addressed in this review. The composition of some organic food may differ from conventional food. Protein content was lower in cereals and eggs. A lower n-6:n-3 polyunsaturated fat (PUFA) ratio was observed in milk, meat and eggs. Long-chain PUFA and vitamin E may be higher in milk, meat and fish, as well as some minerals and antioxidants (phenolic compounds, vitamin C) in fruits, vegetables and starchy food and carotenoids in fruits and vegetables. Epidemiological studies suggest an association between organic diets and lower prevalence of childhood obesity, type 2 diabetes and metabolic syndrome, whereas the protective effect on allergy and cancer is controversial. Some organic food may be of greater nutritional interest for children’s diet than conventional food. Standardised studies comparing food composition and diet in children are needed. Considering the lower toxicologic risk and the sustainability of organic food, the Committee on Nutrition encourages the use of organic food, provided that such food is affordable, alongside specific baby food which is subject to strict specific European Union regulations.
In this paper, the design and optimization of a circularly polarized antenna based on two crossed dipoles in phase quadrature for Global Navigation Satellite System (GNSS) wide band application has been investigated. The proposed design is single fed and relies on parasitic structures to achieve wide band coverage on the GPS standard bands L1 (1559–1610 MHz) and L5 (1164–1189 MHz). Full-wave simulations have been used to compute the radiation properties and the impedance of the antenna. A prototype was manufactured, and good agreement has been observed between the simulated results and measurement for both radiation pattern and reflection coefficient.
The antenna achieves a −10 dB impedance bandwidth of $56.97\%$ covering the band 1164–1610 MHz, and an axial ratio that covers the L5 band ranging between 7 dB and 2.8 dB from 1.164 GHz to 1.3 GHz while maintaining a value below 2.7 dB across the entire L1 band. The antenna occupies a volume of $\,99\, \,\times\,99\, \times 50$ mm3. It has been tested in real conditions during the 23rd French National Microwave Days (JNM) student competition. A GNSS signal receiver has been connected to the antenna. The antenna has been evaluated based on the number of connections it could achieve over a duration of 30 s.
Tropical cyclones can significantly impact mangrove forests, with some recovering rapidly, whilst others may change permanently. Inconsistent approaches to quantifying these impacts limit the capacity to identify patterns of damage and recovery across landscapes and cyclone categories. Understanding these patterns is critical as the changing frequency and intensity of cyclones and compounding effects of climate change, particularly sea-level rise, threaten mangroves and their ecosystem services. Improvements in Earth observation data, particularly satellite-based sensors and datacube environments, have enhanced capacity to classify time-series data and advanced landscape monitoring. Using the Landsat archive within Digital Earth Australia to monitor annual changes in canopy cover and extent, this study aims to quantify and classify immediate and long-term impacts of category 3–5 cyclones for mangroves in Australia. Closed canopy mangrove forests experienced the greatest immediate impact (loss of canopy cover). Most immediate impacts were minor, implying limited immediate mortality. Impacts varied spatially, reflecting proximity to exposed coastlines, cyclone track and forest structure (height, density, condition and species). Recovery was evident across all cyclones, although some areas exhibited permanent damage. Understanding the impacts and characteristics of vulnerable and resilient forests is crucial for managers tasked with protecting mangroves and their services as the climate changes.
This project employs a geoarchaeological approach to explore human occupation of the highland wetlands (bofedales) and salt flats of the Dry Puna of northern Chile (>2500m above sea level) during the Holocene. Differences in the archaeological record of each ecosystem are tentatively suggested to relate to settlement patterns and the history of the landscape.
Objectives: Despite the increasing number of people with dementia (PWD), detection remains low worldwide. In Brazil, PWD is expected to triple by 2050, and diagnosis can be challenging, contributing to high and growing rates of underdiagnosis. At the moment, there is no national estimate of the under detection or characteristics of its distribution according to gender, age and region. We aimed to estimate the proportion of PWD not diagnosed in relation to the estimated number of PWD.
Methods: The number of diagnosed individuals were estimated based on national records of the prescription of anticholinesterases drugs (AChE) in 2022 for the treatment of mild and moderate stages of Alzheimer’s Disease (AD) held by the Unified Health System (SUS). Data were obtained from ftp://ftp.datasus.gov.br and drugs were dispensed according to the national clinical protocol. Studies from the national literature were consulted to estimate: (i) the number of people currently diagnosed with mild and moderate AD; (ii) the proportion of those who obtain AChE from SUS; (iii) the proportion of those who do not take AChE; and (iv) the proportion of AD related to other dementias. We assumed that the under-detection rate of AD would be similar to other dementias and 70% of the diagnosed AD individuals obtain AChE from SUS.
Results: More than 80% of the PWD 60+ are undetected (88.7%, 95% CI = 88.6–88.7). The poorest regions had higher rates (94.6% 95%, CI = 94.5–94.6) than the richest (84.8%, 95% CI = 84.7–84.8). Men had higher rates (89.8%, 95% CI = 89.7–89.9) than women (87.4%, 95% CI = 87.4–87.5). The youngest age group (60-64) had the highest rate (94.6%, 95% CI = 94.5–94.7) which decreased until 85–89 (84.3%, 95% CI = 84.2–84.4), before increasing again to 91.1% (95% CI = 91.0–91.2) among 90+.
Conclusions: Dementia under detection in Brazil is among the highest in the world. Fast populational aging and the highest rates among the youngest individuals are of concern as it may be related to late diagnosis. Gender and regional disparities also need to be considered when developing health policies.
Where and under what conditions the transfer of energy between electromagnetic fields and particles takes place in the solar wind remains an open question. We investigate the conditions that promote the growth of kinetic instabilities predicted by linear theory to infer how turbulence and temperature-anisotropy-driven instabilities are interrelated. Using a large dataset from Solar Orbiter, we introduce the radial rate of strain, a novel measure computed from single-spacecraft data, which we interpret as a proxy for the double-adiabatic strain rate. The solar wind exhibits high absolute values of the radial rate of strain at locations with large temperature anisotropy. We measure the kurtosis and skewness of the radial rate of strain from the statistical moments to show that it is non-Gaussian for unstable intervals and increasingly intermittent at smaller scales with a power-law scaling. We conclude that the velocity field fluctuations in the solar wind contribute to the presence of temperature anisotropy sufficient to create potentially unstable conditions.
During the past 30 yr an impasse has developed in the discovery and commercialization of synthetic herbicides with new molecular targets and novel chemistries. Similarly, there has been little success with bioherbicides, both microbial and chemical. These bioherbicides are needed to combat fast-growing herbicide resistance and to fulfill the need for more environmentally and toxicologically safe herbicides. In response to this substantial and growing opportunity, numerous start-up companies are utilizing novel approaches to provide new tools for weed management. These diverse new tools broaden the scope of discovery, encompassing advanced computational, bioinformatic, and imaging platforms; plant genome–editing and targeted protein degradation technologies; and machine learning and artificial intelligence (AI)-based strategies. This review contains summaries of the presentations of 10 such companies that took part in a symposium held at the WSSA annual meeting in 2024. Four of the companies are developing microbial bioherbicides or natural product–based herbicides, and the other six are using advanced technologies, such as AI, to accelerate the discovery of herbicides with novel molecular target sites or to develop non-GMO, herbicide-resistant crops.
As shown by Wenzel et al. (J. Fluid Mech., vol. 930, 2022, A1), the Eckert number $Ec$ defined using the difference between recovery temperature $\bar{T}_r$ and wall temperature $\bar{T}_w$ can be understood as a meaningful quantity to compare heat-transfer effects inside compressible turbulent boundary layers (for a calorically perfect gas), no matter whether these are caused by different Mach-number or wall-temperature conditions. While the named study deduced this comparative behaviour of $Ec$ from an integral perspective in a strict sense, Cogo et al. (J. Fluid Mech., vol. 974, 2023, A10) performed a systematic parameter study based on the previous findings to look at wall-normal profiles. They have shown that the diabatic parameter $\varTheta$, being equivalent to $Ec$, is capable of categorizing heat-transfer effects for cases at different Mach numbers, even to some extent for some of the wall-normal profiles. Building on this progress, the present paper provides a comprehensive classification of both existing and newly computed super- and hypersonic direct numerical simulation data at various wall temperature conditions into heated cases, adiabatic cases or weakly/moderately/strongly/quasi-incompressibly cooled cases. Hereby, the classification is largely based on the wall-normal position of the temperature peak occurring in cooled boundary-layer cases, which is one of the determining factors for the topological characteristics of diabatic boundary-layer profiles. Integrating high-enthalpy data into the analysis allowed us to confirm the reliability of the proposed classification also in more complex scenarios, where the calorically perfect gas assumption no longer applies and additional heat-transfer mechanisms come into play. While the Eckert number is shown to well characterize heat-transfer effects on most important temperature-related quantities for a wide range of Mach numbers and $\bar {T}_w/\bar {T}_r$ conditions, also the local Reynolds number $Re_{\tau }$ is shown to notably affect the strength of heat-transfer effects. Since both $Ec$ and $Re_{\tau }$ can be determined in advance – or estimated to a reasonable extent – a key advantage of the classification scheme is to allow for an effective a priori estimation of the extent to which heat-transfer effects are to be expected for a given compressible turbulent boundary-layer configuration.
Sub-glacial canyon features up to 580 m deep between flat terraces were identified beneath Devon Ice Cap during a 2023 radar echo sounding (RES) survey. The largest canyon connects a hypothesized brine network near the Devon Ice Cap summit with the marine-terminating Sverdrup outlet glacier. This canyon represents a probable drainage route for the hypothesized water system. Radar bed reflectivity is consistently 30 dB lower along the canyon floor than on the terraces, contradicting the signature expected for sub-glacial water. We compare these data with backscattering simulations to demonstrate that the reflectivity pattern may be topographically induced. Our simulated results indicated a 10 m wide canal-like water feature is unlikely along the canyon floor, but smaller features may be difficult to detect via RES. We calculated basal temperature profiles using a 2D finite difference method and found the floor may be up to 18°C warmer than the terraces. However, temperatures remain below the pressure melting point, and there is limited evidence that the canyon floor supports a connected drainage system between the DIC summit and Sverdrup Glacier. The terrain beneath Devon Ice Cap demonstrates limitations for RES. Future studies should evaluate additional correction methods near complex terrain, such as RES simulation as we demonstrate here.
This systematic review and individual participant data meta-analysis (IPDMA) examined the overall effectiveness of eye movement desensitization and reprocessing (EMDR) in reducing posttraumatic stress disorder (PTSD) symptoms, achieving response and remission, and reducing treatment dropout among adults with PTSD compared to other psychological treatments. Additionally, we examined available participant-level moderators of the efficacy of EMDR.
Methods
This study included randomized controlled trials. Eligible studies were identified by a systematic search in PubMed, Embase, PsyclNFO, PTSDpubs, and CENTRAL. The target population was adults with above-threshold baseline PTSD symptoms. Trials were eligible if at least 70% of study participants had been diagnosed with PTSD using a structured clinical interview. Primary outcomes included PTSD symptom severity, treatment response, and PTSD remission. Treatment dropout was a secondary outcome. The systematic search retrieved 15 eligible randomized controlled trials (RCTs); 8 of these 15 were able to be included in this IPDMA (346 patients). Comparator treatments included relaxation therapy, emotional freedom technique, trauma-focused cognitive behavioral psychotherapies, and REM-desensitization.
Results
One-stage IPDMA found no significant difference between EMDR and other psychological treatments in reducing PTSD symptom severity (β = −0.24), achieving response (β = 0.86), attaining remission (β = 1.05), or reducing treatment dropout rates (β = −0.25). Moderator analyses found unemployed participants receiving EMDR had higher PTSD symptom severity at the post-test, and males were more likely to drop out of EMDR treatment than females.
Conclusion
The current study found no significant difference between EMDR and other psychological treatments. We found some indication of the moderating effects of gender and employment status.
Chronic insomnia is a highly prevalent disorder affecting approximately one-in-three Americans. Insomnia is associated with increased cognitive and brain arousal. Compared to healthy individuals, those with insomnia tend to show greater activation/connectivity within the default mode network (DMN) of the brain, consistent with the hyperarousal theory. We investigated whether it would be possible to suppress activation of the DMN to improve sleep using a type of repetitive transcranial magnetic stimulation (rTMS) known as continuous theta burst stimulation (cTBS).
Participants and Methods:
Participants (n=9, 6 female; age=25.4, SD=5.9 years) meeting criteria for insomnia/sleep disorder on standardized scales completed a counterbalanced sham-controlled crossover design in which they served as their own controls on two separate nights of laboratory monitored sleep on separate weeks. Each session included two resting state functional magnetic resonance imaging (fMRI) sessions separated by a brief rTMS session. Stimulation involved a 40 second cTBS stimulation train applied over an easily accessible cortical surface node of the DMN located at the left inferior parietal lobe. After scanning/stimulation, the participant was escorted to an isolated sleep laboratory bedroom, fitted with polysomnography (PSG) electrodes, and allowed an 8-hour sleep opportunity from 2300 to 0700. PSG was monitored continuously and scored for standard outcomes, including total sleep time (TST), percentage of time various sleep stages, and number of arousals.
Results:
Consistent with our hypothesis, a single session of active cTBS produced a significant reduction of functional connectivity (p < .05, FDR corrected) within the DMN. In contrast, the sham condition produced no changes in functional connectivity from pre- to post-treatment. Furthermore, after controlling for age, we also found that the active treatment was associated with meaningful trends toward greater overnight improvements in sleep compared to the sham condition. First, the active cTBS condition was associated with significantly greater TST compared to sham (F(1,7)=14.19, p=.007, partial eta-squared=.67). Overall, individuals obtained 26.5 minutes more sleep on the nights that they received the active cTBS compared to the sham condition. Moreover, the active cTBS condition was associated with a significant increase in the percentage of time in rapid eye movement (REM%) sleep compared to the sham condition (F(1,7)=7.05, p=.033, partial eta-squared=.50), which was significant after controlling for age. Overall, active treatment was associated with an increase of 6.76% more of total sleep time in REM compared to sham treatment. Finally, active cTBS was associated with fewer arousals from sleep (t(8) = -1.84, p = .051, d = .61), with an average of 15.1 fewer arousals throughout the night than sham.
Conclusions:
Overall, these findings suggest that this simple and brief cTBS approach can alter DMN brain functioning in the expected direction and was associated with trends toward improved objectively measured sleep, including increased TST and REM% and fewer arousals during the night following stimulation. These findings emerged after only a single 40-second treatment, and it remains to be seen whether multiple treatments over several days or weeks can sustain or even improve upon these outcomes.
We introduce new data resources to enable spatial and nonspatial research on Canadian elections, electoral history and political geography. These include a comprehensive set of distinct identification codes for every federal electoral district in Canada from 1867 to the present, a complete set of digital boundary files for these electoral districts, historical census data aggregated to federal electoral districts, and tools to connect our district identification codes to federal election results. After describing the construction and content of these new resources, we provide an example of their use in a comparative-historical analysis of district compactness in Canada and the United States. We find that, in contrast to the United States, postwar institutional changes to district boundary-drawing processes had little effect on district compactness in Canada.
Communities of color have faced disproportionate morbidity and mortality from COVID-19, coupled with historical underrepresentation in US clinical trials, creating challenges for equitable participation in developing and testing a safe and effective COVID-19 vaccine.
Methods:
To increase diversity, including racial and ethnic representation, in local Los Angeles County NIH-sponsored Phase 3 SARS-CoV-2 vaccine clinical trials, we used deliberative community engagement approaches to form a Community Consultant Panel (CCP) that partnered with trial research teams. Thirteen members were recruited, including expertise from essential workers, community-based and faith-based organizations, or leaders from racial and ethnic minority communities.
Results:
Working closely with local investigators for the vaccine studies, the CCP provided critical insight on best practices for community trust building, clinical trial participation, and reliable information dissemination regarding COVID-19 vaccines. Modifying recruitment, outreach, and trial protocols led to majority–minority participants (55%–78%) in each of the three vaccine clinical trials. CCP’s input led to cultural tailoring of recruitment materials, changes in recruitment messaging, and supportive services to improve trial accessibility and acceptability (transportation, protocols for cultural competency, and support linkages to care in case of an adverse event). Barriers to clinical trial participation unable to be resolved included childcare, requests for after-hours appointment availability, and mobile locations for trial visits.
Conclusion:
Using deliberative community engagement can provide critical and timely insight into the community-centered barriers to COVID-19 vaccine trial participation, including addressing social determinants of health, trust, clinical trial literacy, structural barriers, and identifying trusted messenger and reliable sources of information.
We present spatially distributed seasonal and annual surface mass balances of Wolverine Glacier, Alaska, from 2016 to 2020. Our approach accounts for the effects of ice emergence and firn compaction on surface elevation changes to resolve the spatial patterns in mass balance at 10 m scale. We present and compare three methods for estimating emergence velocities. Firn compaction was constrained by optimizing a firn model to fit three firn cores. Distributed mass balances showed good agreement with mass-balance stakes (RMSE = 0.67 m w.e., r = 0.99, n = 41) and ground-penetrating radar surveys (RMSE = 0.36 m w.e., r = 0.85, n = 9024). Fundamental differences in the distributions of seasonal balances highlight the importance of disparate physical processes, with anomalously high ablation rates observed in icefalls. Winter balances were found to be positively skewed when controlling for elevation, while summer and annual balances were negatively skewed. We show that only a small percent of the glacier surface represents ideal locations for mass-balance stake placement. Importantly, no suitable areas are found near the terminus or in elevation bands dominated by icefalls. These findings offer explanations for the often-needed geodetic calibrations of glaciological time series.
We perform interface-resolved simulations of finite-size evaporating droplets in weakly compressible homogeneous shear turbulence. The study is conducted by varying three dimensionless physical parameters: the initial gas temperature over the critical temperature $T_{g,0}/T_c$, the initial droplet diameter over the Kolmogorov scale $d_0/\eta$ and the surface tension, i.e. the shear-based Weber number, $We_{\mathcal {S}}$. For the smallest $We_{\mathcal {S}}$, we first discuss the impact on the evaporation rate of the three thermodynamic models employed to evaluate the gas thermophysical properties: a constant property model and two variable-properties approaches where either the gas density or all the gas properties are allowed to vary. Taking this last approach as reference, the model assuming constant gas properties and evaluated with the ‘1/3’ rule is shown to predict the evaporation rate better than the model where the only variable property is the gas density. Moreover, we observe that the well-known Frössling/Ranz-Marshall correlation underpredicts the Sherwood number at low temperatures, $T_{g,0}/T_c=0.75$. Next, we show that the ratio between the actual evaporation rate in turbulence and the one computed in stagnant conditions is always much higher than one for weakly deformable droplets: it decreases with $T_{g,0}/T_c$ without approaching unity at the highest $T_{g,0}/T_c$ considered. This suggests an evaporation enhancement due to turbulence also in conditions typical of combustion applications. Finally, we examine the overall evaporation rate and the local interfacial mass flux at higher $We_{\mathcal {S}}$, showing a positive correlation between evaporation rate and interfacial curvature, especially at the lowest $T_{g,0}/T_c$.
Speech and dialogue are the heart of politics: nearly every political institution in the world involves verbal communication. Yet vast literatures on political communication focus almost exclusively on what words were spoken, entirely ignoring how they were delivered—auditory cues that convey emotion, signal positions, and establish reputation. We develop a model that opens this information to principled statistical inquiry: the model of audio and speech structure (MASS). Our approach models political speech as a stochastic process shaped by fixed and time-varying covariates, including the history of the conversation itself. In an application to Supreme Court oral arguments, we demonstrate how vocal tone signals crucial information—skepticism of legal arguments—that is indecipherable to text models. Results show that justices do not use questioning to strategically manipulate their peers but rather engage sincerely with the presented arguments. Our easy-to-use R package, communication, implements the model and many more tools for audio analysis.
The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans, mainly in the so-called developed countries, such as Europe and North America. Although large carnivore populations have generally increased in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks. Of the eight bear species inhabiting the world, two (i.e. the Andean bear and the giant panda) have never been reported to attack humans, whereas the other six species have: sun bears Helarctos malayanus, sloth bears Melursus ursinus, Asiatic black bears Ursus thibetanus, American black bears Ursus americanus, brown bears Ursus arctos, and polar bears Ursus maritimus. This chapter provides insights into the causes, and as a result the prevention, of bear attacks on people. Prevention and information that can encourage appropriate human behavior when sharing the landscape with bears are of paramount importance to reduce both potentially fatal human–bear encounters and their consequences to bear conservation.