We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
Psychiatric disorders are a group of complex psychological syndromes with high prevalence. Recent studies observed associations between altered plasma proteins and psychiatric disorders. This study aims to systematically explore the potential genetic relationships between five major psychiatric disorders and more than 3,000 plasma proteins.
Methods.
The genome-wide association study (GWAS) datasets of attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) were driven from the Psychiatric GWAS Consortium. The GWAS datasets of 3,283 human plasma proteins were derived from recently published study, including 3,301 study subjects. Linkage disequilibrium score (LDSC) regression analysis were conducted to evaluate the genetic correlations between psychiatric disorders and each of the 3,283 plasma proteins.
Results.
LDSC observed several genetic correlations between plasma proteins and psychiatric disorders, such as ADHD and lysosomal Pro-X carboxypeptidase (p value = 0.015), ASD and extracellular superoxide dismutase (Cu-Zn; p value = 0.023), BD and alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6 (p value = 0.007), MDD and trefoil factor 1 (p value = 0.011), and SCZ and insulin-like growth factor-binding protein 6 (p value = 0.011). Additionally, we detected four common plasma proteins showing correlation evidence with both BD and SCZ, such as tumor necrosis factor receptor superfamily member 1B (p value = 0.012 for BD, p value = 0.011 for SCZ).
Conclusions.
This study provided an atlas of genetic correlations between psychiatric disorders and plasma proteome, providing novel clues for pathogenetic and biomarkers, therapeutic studies of psychiatric disorders.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.