We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to evaluate the association of coffee consumption with different additives, including milk and/or sweetener (sugar and/or artificial sweetener), and different coffee types, with new-onset acute kidney injury (AKI), and examine the modifying effects of genetic variation in caffeine metabolism. 194 324 participants without AKI at baseline in the UK Biobank were included. The study outcome was new-onset AKI. During a median follow-up of 11·6 years, 5864 participants developed new-onset AKI. Compared with coffee non-consumers, a significantly lower risk of new-onset AKI was found in coffee consumers adding neither milk nor sugar to coffee (hazard ratio (HR), 0·86; 95 % CI, 0·78, 0·94) and adding only milk to coffee (HR,0·83; 95 % CI, 0·78, 0·89), but not in coffee consumers adding only sweetener (HR,1·14; 95 % CI, 0·99, 1·31) and both milk and sweetener to coffee (HR,0·96; 95 % CI, 0·89, 1·03). Moreover, there was a U-shaped association of coffee consumption with new-onset AKI, with the lowest risk at 2–3 drinks/d, in unsweetened coffee (no additives or milk only to coffee), but no association was found in sweetened coffee (sweetener only or both milk and sweetener to coffee). Genetic variation in caffeine metabolism did not significantly modify the association. A similar U-shaped association was found for instant, ground and decaffeinated coffee consumption in unsweetened coffee consumers, but not in sweetened coffee consumers. In conclusion, moderate consumption (2–3 drinks/d) of unsweetened coffee with or without milk was associated with a lower risk of new-onset AKI, irrespective of coffee type and genetic variation in caffeine metabolism.
The influence of outer large-scale motions (LSMs) on near-wall structures in compressible turbulent channel flows is investigated. To separate the compressibility effects, velocity fluctuations are decomposed into solenoidal and dilatational components using the Helmholtz decomposition method. Solenoidal velocity fluctuations manifest as near-wall streaks and outer large-scale structures. The spanwise drifting of near-wall solenoidal streaks is found to be driven by the outer LSMs, while LSMs have a trivial influence on the spanwise density of solenoidal streaks, consistent with the outer LSM impacts found in incompressible flows (Zhou et al., J. Fluid Mech., vol. 940, 2022, p. A23). Dilatational motions are characterized by the near-wall small-scale travelling-wave packets and the large-scale parts in the outer region. The streamwise advection velocity of the near-wall structures remains at $16 \sim 18u_{\tau }$, hardly influenced by Mach numbers, Reynolds numbers and wall temperatures. The spanwise drifting of near-wall dilatational structures, quantified by the particle image velocimetry method, follows a mechanism distinct from solenoidal streaks. This drifting velocity is notably larger than those of the solenoidal streaks, and the influence of outer LSMs is not the primary trigger for this drifting.
Immunity activation and inflammation are the main characteristics of rheumatoid arthritis and clonal hematopoiesis. However, it remains unclear whether rheumatoid arthritis increase the risk of clonal hematopoiesis. Here, a Mendelian randomization (MR) analysis was conduct to explore the causal effects of rheumatoid arthritis on clonal hematopoiesis. Summary statistics data of rheumatoid arthritis (13,838 cases and 33,742 controls) and clonal hematopoiesis (10,203 cases and 173,918 controls) derived from a genomewide association study were selected to analyze. We selected inverse-variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to evaluate the causal effect of rheumatoid arthritis on clonal hematopoiesis. The two-sample MR analysis suggested a strong causal relationship between rheumatoid arthritis and clonal hematopoiesis by inverse-variance weighted (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039706) and weighted median (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039518447) methods. No significant pleiotropy or heterogeneity was found in the sensitivity analysis. These results supported a potentially causal relationship between rheumatoid arthritis and clonal hematopoiesis, and the exposure of rheumatoid arthritis increased the risks of clonal hematopoiesis. Our findings highlight the importance of how chronic inflammation and immune activation induced rheumatoid arthritis enhances the risks of clonal hematopoiesis, and that early intervention with rheumatoid arthritis patients might reduce the clonal hematopoiesis risks in rheumatoid arthritis patients. Moreover, our study provides clues for prediction of risk factors and potential mechanisms of clonal hematopoiesis.
Hydrophobicity, swellability, and dispersion are important properties for organo-montmorillonites (OMnt) and have yet to be fully characterized for all OMnt configurations. The purpose of the present work was to examine the preparation of OMnt from the reaction of Ca2+-montmorillonite (Ca2+-Mnt) with a high concentration of surfactant and to reveal the relevant properties of hydrophobicity and dispersion of the resultant OMnt. A series of OMnt samples were prepared using a small amount of water and cetyltrimethylammonium bromide (CTAB) with a concentration more than the CTAB critical micelle concentration (CMC). The relationship between OMnt microstructure and the hydrophobicity and swellability properties was investigated in detail. The resulting OMnt samples were characterized using powder X-ray diffraction patterns (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermogravimetry (TG-DTG), water contact angle tests, swelling indices, and transmission electron microscopy (TEM). The addition of CTAB and water in the OMnt preparation affected the OMnt microstructure and properties. An increase in CTAB concentration led to a more ordered arrangement of cetyltrimethylammonium (CTA+) cations in the interlayer space of the OMnt and a large amount of CTA+ cations on the outer surfaces of the OMnt. The swelling indices and the water contact angles of OMnt samples depended on the distribution of the CTAB surfactant on OMnt and the orientation of the surfactant hydrophilic groups on the inner and on the outer surfaces of OMnt. A maximum swelling index of 39 mL/g in xylene was achieved with an average water contact angle of 62.0° ± 2.0° when the amount of CTAB added was 2 times the cation exchange capacity (CEC) of Mnt and the lowest water to dry Mnt mass ratio was 3 during the preparation of OMnt samples. The platelets of OMnt aggregated together in xylene by electrostatic attraction and by hydrophobic interactions.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
Modification of the surfaces of montmorillonite (Mnt) by organic molecules is an effective method for improving their affinity toward non-aqueous substances, and has resulted in extensive industrial applications as rheological control agents, drilling fluids, and other functional materials used in applications ranging from environmental remediation to coatings. The present study reviewed recent progress in organo-modification of Mnt, and provides state-of-the-art insights into proposed modification mechanisms and the peculiar functionalities of the resulting organo-montmorillonite (OMnt). Several routes have been employed to modify Mnt, including ion exchange with organic ions, surface adsorption, and grafting of organics. Commonly used organic modifiers include cationic, anionic, zwitterionic, non-ionic, and polymeric species. Organo-modification is driven by multiple interactions: van der Waals forces, cation exchange, electrostatic interaction, hydrogen bonds, and ion–dipole interaction. OMnt, in general, exhibits synergistic and/or antagonistic effects when used in oil-based drilling fluids, environmental remediation, or layered silicate/polymer nanocomposites. The detailed mechanisms of non-ionic and zwitterionic modification of Mnt remain unclear. This literature survey suggests that future work should emphasize deeper understanding of interactions between the Mnt and the organic modifiers, and meanwhile expand the applications of OMnt into catalysis, drug carriers, and the biomedical field.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.
The association between dietary Cu intake and mortality risk remains uncertain. We aimed to investigate the relationship of dietary Cu intake with all-cause mortality among Chinese adults. A total of 17 310 participants from the China Health and Nutrition Survey, a national ongoing open cohort of Chinese participants, were included in the analysis. Dietary intake was measured by three consecutive 24-h dietary recalls in combination with a weighing inventory over the same 3 d. The average intakes of the 3-d dietary macronutrients and micronutrients were calculated. The study outcome was all-cause mortality. During a median follow-up of 9·0 years, 1324 (7·6 %) participants died. After adjusting for sex, age, BMI, ever alcohol drinking, ever smoking, education levels, occupations, urban or rural residents, systolic blood pressure, diastolic blood pressure and the intakes of fat, protein and carbohydrate, the association between dietary Cu intake and all-cause mortality followed a J-shape (Pfor nonlinearity = 0·047). When dietary Cu intake was assessed as quartiles, compared with those in the first quartile (<1·60 mg/d), the adjusted hazard ratios for all-cause mortality were 0·87 (95 % CI (0·71, 1·07)), 0·98 (95 % CI (0·79, 1·21)) and 1·49 (95 % CI (1·19, 1·86)), respectively, in participants in the second (1·60–<1·83 mg/d), third (1·83–<2·09 mg/d) and fourth (≥2·09 mg/d) quartiles. A series of subgroup analyses and sensitivity analyses showed similar results. Overall, our findings emphasised the importance of maintaining optimal dietary Cu intake levels for prevention of premature death.
Late Palaeozoic igneous rock associations in response to subduction, accretion, and final closure of the eastern Palaeo-Asian Ocean play a significant role in understanding the geodynamic evolution of the southeastern Central Asian Orogenic Belt. Previous studies have identified a Permian arc magmatic belt associated with the southward-dipping subduction of the eastern Palaeo-Asian Ocean along the Solonker–Changchun suture zone. The genetic mechanism and associated geodynamic settings are of great importance in deciphering the evolution of the eastern Palaeo-Asian Ocean. This paper presents zircon U–Pb–Hf isotope and whole-rock geochemical analyses for a suite of magmatic rocks including the early Permian diorite porphyrites (ca. 281.0 Ma), andesites (ca. 276 Ma) and rhyolites (ca. 275 Ma) in the Kulun region. The diorite porphyrites and andesites have high SiO2 and total alkali contents, and low MgO contents and Mg no. values, with enrichments in large ion lithophile elements and depletions in high-field-strength elements. These geochemical characteristics, together with low-Sr and high-Yb contents, a weak concave-upward shape of middle rare earth elements and negative Eu anomalies, suggest that these intermediate igneous rocks were generated by partial melting of amphibolitic lower crust at a crustal depth of 30–40 km. The rhyolites have heterogeneous isotopic compositions, with ϵHf(t) values and TDM2 ages of –20.8 to +0.5 and 3578∼1494 Ma, implying that they were likely derived from partial melting of a mixed source dominated by recycled ancient crust with minor juvenile crustal materials. The rhyolites show potassic affinity with relatively high K2O and very low Na2O, which was attributed to liquid immiscibility of felsic magma and subsequent limited fractional crystallization of plagioclase. The regional igneous associations, metamorphic events, and coeval sedimentary rocks along the Solonker–Changchun suture zone indicate that the early Permian igneous rocks were formed in an active continental arc environment in response to southward subduction of the eastern Palaeo-Asian Ocean.
The interactions between the near-wall streaks and the large-scale motions (LSMs) of the outer region of wall-bounded turbulent flows are investigated. The co-supporting hypothesis of Toh & Itano (J. Fluid Mech., vol. 524, 2005, pp. 249–262) is checked in full-scale channels at low to moderate Reynolds numbers, from two points of view. To study the top-down influence of the outer structures on the spanwise motion of the near-wall streaks, a method inspired by particle-image velocimetry is used to track the spanwise position of the streaks. Their spanwise advection velocity is found to be affected by the hierarchy of large-scale circulations in the logarithmic layer, but their spanwise streak density is only weakly related to the LSMs. The evidence suggests that a top-down influence exists and drives the drift of the streaks in the spanwise direction, as suggested by Toh & Itano (J. Fluid Mech., vol. 524, 2005, pp. 249–262), but that the hypothesised streak accumulation rarely occurs. Numerical experiments at $Re_{\tau }\thickapprox 535$ are then performed to clarify the role of the near-wall streaks in the generation and preservation of the outer LSMs. The results show that the merger of the near-wall streaks is only weakly correlated with the generation of the LSMs, and that removing the near-wall roots of the LSMs does not affect the evolution of their outer region. It is concluded that the bottom-up influence from the near-wall streaks is not essential for the LSM generation and preservation, also weakening the evidence for the co-supporting hypothesis.
Researchers at the Centers for Disease Control and Prevention monitor unplanned school closure (USC) reports through online systematic searches (OSS) to assist public health emergency responses. We counted the additional reports identified through social media along with OSS to improve USC monitoring.
Methods:
Facebook and Twitter data of public-school districts and private schools in counties affected by California wildfires in October and December of 2017 and January of 2018 were retrieved. We computed descriptive statistics and performed multivariable logistic regression for both OSS and social media data.
Results:
Among the 362 public-school districts in wildfire-affected counties, USCs were identified for 115 (32%) districts, of which OSS identified 104 (90%), Facebook, 59 (52%), and Twitter, 37 (32%). These data correspond to 4622 public schools, among which USCs were identified for 888 (19.2%) schools, of which OSS identified 722 (81.3%), Facebook, 496 (55.9%), and Twitter, 312 (35.1%). Among 1289 private schools, USCs were identified for 104 schools, of which OSS identified 47 (45.2%), Facebook, 67 (64.4%), and Twitter, 29 (27.9%). USC announcements identified via social media, in addition to those via OSS, were 11 public school districts, 166 public schools, and 57 private schools.
Conclusion:
Social media complements OSS as additional resources for USC monitoring during disasters.
We aim to examine the relation of several folate forms (5-methyltetrahydrofolate (5-mTHF), unmetabolised folic acid (UMFA) and MeFox) with kidney function and albuminuria, which remained uncertain. The cross-sectional study was conducted in 18 757 participants from National Health and Nutrition Examination Survey 2011–2018. The kidney outcomes were reduced estimated glomerular filtration rate (eGFR) (<60 ml/min/1·73 m2), microalbuminuria (albumin:creatinine ratio (ACR) of 30–299 mg/g) and macroalbuminuria (ACR ≥ 300 mg/g). Overall, there were significant inverse associations between serum 5-mTHF and kidney outcomes with significant lower prevalence of reduced eGFR (OR, 0·71; 95 % CI: 0·57, 0·87) and macroalbuminuria (OR, 0·65; 95 % CI: 0·46, 0·91) in participants in quartiles 3–4 (v. quartiles 1–2; both Pfor trend across quartiles <0·05). In contrast, there were significant positive relationship between serum UMFA and kidney outcomes with significant higher prevalence of reduced eGFR in participants in quartiles 2–4 (v. quartile 1; OR, 2·12; 95 % CI: 1·45, 3·12; Pfor trend <0·001) and higher prevalence of macroalbuminuria in participants in quartile 4 (v. quartiles 1–3; OR, 1·46; 95 % CI: 1·06, 2·01; Pfor trend <0·001). However, there was no significant associations of 5-mTHF and UMFA with microalbuminuria. In addition, there were significant positive relationships of serum MeFox with reduced eGFR, microalbuminuria and macroalbuminuria (all Pfor trend <0·01). In conclusion, higher 5-mTHF level, along with lower UMFA and MeFox level, was associated with lower prevalence of kidney outcomes, which may help counsel future clinical trials and nutritional guidelines regarding the folate supplement.
Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.
We aimed to examine whether baseline neutrophil counts affected the risk of new-onset proteinuria in hypertensive patients, and, if so, whether folic acid treatment is particularly effective in proteinuria prevention in such a setting. A total of 8208 eligible participants without proteinuria at baseline were analysed from the renal substudy of the China Stroke Primary Prevention Trial. Participants were randomised to receive a double-blind daily treatment of 10 mg of enalapril and 0·8 mg of folic acid (n 4101) or 10 mg of enalapril only (n 4107). The primary outcome was new-onset proteinuria, defined as a urine dipstick reading of ≥1+ at the exit visit. The mean age of the participants was 59·5 (sd, 7·4) years, 3088 (37·6 %) of the participants were male. The median treatment duration was 4·4 years. In the enalapril-only group, a significantly higher risk of new-onset proteinuria was found among participants with higher neutrophil counts (quintile 5; ≥4·8 × 109/l, OR 1·44; 95 % CI 1·00, 2·06), compared with those in quintiles 1–4. For those with enalapril and folic acid treatment, compared with the enalapril-only group, the new-onset proteinuria risk was reduced from 5·2 to 2·8 % (OR 0·49; 95 % CI 0·29, 0·82) among participants with higher neutrophil counts (≥4·8 × 109/l), whereas there was no significant effect among those with neutrophil counts <4·8 × 109/l. In summary, among hypertensive patients, those with higher neutrophil counts had increased risk of new-onset proteinuria, and this risk was reduced by 51 % with folic acid treatment.
To aid emergency response, Centers for Disease Control and Prevention (CDC) researchers monitor unplanned school closures (USCs) by conducting online systematic searches (OSS) to identify relevant publicly available reports. We examined the added utility of analyzing Twitter data to improve USC monitoring.
Methods:
Georgia public school data were obtained from the National Center for Education Statistics. We identified school and district Twitter accounts with 1 or more tweets ever posted (“active”), and their USC-related tweets in the 2015-16 and 2016-17 school years. CDC researchers provided OSS-identified USC reports. Descriptive statistics, univariate, and multivariable logistic regression were computed.
Results:
A majority (1,864/2,299) of Georgia public schools had, or were in a district with, active Twitter accounts in 2017. Among these schools, 638 were identified with USCs in 2015-16 (Twitter only, 222; OSS only, 2015; both, 201) and 981 in 2016-17 (Twitter only, 178; OSS only, 107; both, 696). The marginal benefit of adding Twitter as a data source was an increase in the number of schools identified with USCs by 53% (222/416) in 2015-16 and 22% (178/803) in 2016-17.
Conclusions:
Policy-makers may wish to consider the potential value of incorporating Twitter into existing USC monitoring systems.
The addition of clay minerals in drilling fluids modifies the dispersion's viscosity. In this article, scientific advances related to the use of clays and clay minerals (bentonite, palygorskite, sepiolite and mixtures of clay minerals) in drilling fluids are summarized and discussed based on their specific structure, rheological properties, applications, prevailing challenges and future directions. The rheological properties of drilling fluids are affected by the temperature, type of electrolytes, pH and concentration of clay minerals. Bentonites are smectite-rich clays often used in drilling fluids, and their composition varies from deposit to deposit. Such variations significantly affect the behaviour of bentonite-based drilling fluids. Palygorskite is suitable for use in oil-based drilling fluids, but the gelation and gel structures of palygorskite-added drilling fluids have not received much attention. Sepiolite is often used in water-based drilling fluids as a rheological additive. Dispersions containing mixtures of clays including bentonite, kaolin, palygorskite and sepiolite are used in drilling fluids requiring specific features such as high-density drilling fluids or those used in impermeable slurry walls. In these cases, the surface chemistry–microstructure–property relationships of mixed-clay dispersions need to be understood fully. The prevailing challenges and future directions in drilling fluids research include safety, ‘green’ processes and high-temperature and high-pressure-resistant clay minerals.
In this study, we sought to extend the research on self-determination, future orientation, and personal identity construction by integrating the theories on self-determination and future orientation to provide a conceptual framework for understanding the relations between personal identity and the following individual characteristics: Hope, optimism, awareness of self, and perceived choice. 191 university students in China responded surveys in hardcopies on an individual basis. Our SEM results revealed that proximal future orientation influenced the mechanisms through which distal psychological traits affected identity construction. Specifically, hope mediated the effects of self-awareness on the participants’ personal identity ratings (b = .45, p < .05). Although optimism was related to both awareness of self and perceived choice, it was not significantly related to personal identity. This study suggested an extended framework through which we could understand how the interaction between future orientation and self-determination can predict personal identity. The findings have significant implications for interventions in educational settings.
Introduction: The mortality of Parkinson’s disease (PD) and its associated risk factors among clinically definite PD patients in China has been rarely investigated. Our study aimed to identify the mortality rates and predictors of death in PD patients in China. Methods: 157 consecutive, clinically definite PD patients from the urban area of Shanghai were recruited from a central hospital based movement disorder clinic in 2006. All patients were regularly followed up at the clinic until December 31, 2011, or death. Mortality and associations with baseline demographics, health and medical factors were then determined within the cohort. Results: After 5 years, 11(7%) patients had died. The standardised mortality ratio was 0.62 (95% CI 0.32 to 1.07, P=0.104). The main causes of death were pneumonia (54.5%, 6/11) and digestive disorders (18.2%, 2/11), respectively. Age at onset, independent living, the mini mental state examination score, the Parkinson’s disease sleep scale score and the Epworth sleepiness scale score at baseline were statistically significantly different between the survival group and the deceased group (P<0.05). Across all participants, risk factors for death included low mini mental state examination score, and high Epworth sleepiness scale score according to a binary variable logistic regression analysis. Conclusions: This study confirms the similar survival of patients with PD to the control population up to a follow-up of 5 years. Interventions tailored to potential risk factors associated with death may offer further benefits.