We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Seven accelerator mass spectrometry radiocarbon (AMS 14C) dates (7260±106∼7607±95 BP averaged 7444±103 BP) on a giant oyster shell, collected from an ancient shore of the Taipei Basin, are similar to the LSC (liquid scintillation counting) 14C age (7260±46 BP) of a grass sample inside the shell. The calibrated 14C ages of the C. gigas by Marine20 are 7490±240∼7805±230 cal BP (average 7660±96 cal BP), generally agreed with the calibrated LSC 14C ages of the grass and the oyster shell. Combined with other 14C ages of shoreline samples in the Taipei Basin, it is evident that sea level rose from 8600 to 7600 cal BP and reached a stand higher than modern sea level. During this marine transgression, the sedimentation rate along the shoreline was very high because 14C dating was not able to detect age differences for 4–5 m thick sediment sequences. Sixty-nine analyses of δ18O and δ13C from the oldest part of the shell exhibit clear seasonal cycles, with a 4-year period of growth in the 5.5-cm section. According to the δ18O values, the ancient oyster grew in a warmer-than-present shoreline environment, suggesting that the current absence of the giant oyster in Taiwan is not due to warming conditions.
Functional montmorillonite can be dispersed in polymer coatings and organic species and polymers can be intercalated into the interlayer space or grafted onto the surface of the functional montmorillonite. The addition of functional montmorillonite into polymer-based coatings can significantly improve anti-corrosion, refractory, super-hydrophobicity, antibacterial activity, and absorption of solar radiation by the resulting montmorillonite/polymer coatings. Montmorillonite can be functionalized for this purpose by ion exchange, intercalation, exfoliation, or combinations of these treatments. The rigid montmorillonite layers interspersed within the polymer matrix inhibit the penetration of corrosive substances, minimize the impact of high-temperature airflow, and thereby lead to strong resistance of the coating to corrosion and fire. The combination of polymers and dispersed montmorillonite nanolayers, which are modified by metal ions, metal oxides, and hydrophobic organic species, allows the resulting composite coating to have quite a rough surface and a much smaller surface free energy so that the montmorillonite/polymer coating possesses superhydrophobicity. The interlayer space of functional montmorillonite can also host or encapsulate antibacterial substances, phase-change materials, and solar energy-absorbing materials. Moreover, it can act as a template to make these guest species exist in a more stable and ordered state. Literature surveys suggest that future work on the functional montmorillonite/polymer coatings should be targeted at the manufacture of functional montmorillonite nanolayers by finding more suitable modifiers and tuning the dispersion and funtionalities of montmorillonite in the coatings.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the ‘Wuxiang No. 1’ strain of Lentinula edodes (Berk.) Pegler and the ‘Gaowenxiu’ strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.
Increased access to defensible material wealth is hypothesised to escalate inequality. Market integration, which creates novel opportunities in cash economies, provides a means of testing this hypothesis. Using demographic data collected from 505 households among the matrilineal and patrilineal Mosuo in 2017, we test whether market integration is associated with increased material wealth, whether increased material wealth is associated with wealth inequality, and whether being in a matrilineal vs. patrilineal kinship system alters the relationship between wealth and inequality. We find evidence that market integration, measured as distance to the nearest source of tourism and primary source of household income, is associated with increased household income and ‘modern’ asset value. Both village-level market integration and mean asset value were associated negatively, rather than positively, with inequality, contrary to predictions. Finally, income, modern wealth and inequality were higher in matrilineal communities that were located closer to the centre of tourism and where tourism has long provided a relatively stable source of income. However, we also observed exacerbated inequality with increasing farm animal value in patriliny. We conclude that the forces affecting wealth and inequality depend on local context and that the importance of local institutions is obscured by aggregate statistics drawn from modern nation states.
The association between dietary Cu intake and mortality risk remains uncertain. We aimed to investigate the relationship of dietary Cu intake with all-cause mortality among Chinese adults. A total of 17 310 participants from the China Health and Nutrition Survey, a national ongoing open cohort of Chinese participants, were included in the analysis. Dietary intake was measured by three consecutive 24-h dietary recalls in combination with a weighing inventory over the same 3 d. The average intakes of the 3-d dietary macronutrients and micronutrients were calculated. The study outcome was all-cause mortality. During a median follow-up of 9·0 years, 1324 (7·6 %) participants died. After adjusting for sex, age, BMI, ever alcohol drinking, ever smoking, education levels, occupations, urban or rural residents, systolic blood pressure, diastolic blood pressure and the intakes of fat, protein and carbohydrate, the association between dietary Cu intake and all-cause mortality followed a J-shape (Pfor nonlinearity = 0·047). When dietary Cu intake was assessed as quartiles, compared with those in the first quartile (<1·60 mg/d), the adjusted hazard ratios for all-cause mortality were 0·87 (95 % CI (0·71, 1·07)), 0·98 (95 % CI (0·79, 1·21)) and 1·49 (95 % CI (1·19, 1·86)), respectively, in participants in the second (1·60–<1·83 mg/d), third (1·83–<2·09 mg/d) and fourth (≥2·09 mg/d) quartiles. A series of subgroup analyses and sensitivity analyses showed similar results. Overall, our findings emphasised the importance of maintaining optimal dietary Cu intake levels for prevention of premature death.
This study aimed to investigate the relationship between depression in older nursing home residents and family caregivers’ (FCGs) depressive status and reasons for involvement with residents.
Design:
This study employed a cross-sectional design.
Setting:
Eight nursing homes in northern Taiwan.
Participants:
A total of 139 older resident–FCG pairs were recruited.
Measurements:
Depression was measured with the Geriatric Depression Scale-Short Form for nursing home residents and the Center for Epidemiologic Studies Depression Scale-Short Form for family members. Depression and demographic data were collected with face-to-face interviews. The meaning ascribed to caregivers’ nursing home visits was calibrated using the Family Meaning of Nursing-Home Visits scale. Multiple logistic regression was used to understand the factors related to residents’ depressive symptoms.
Results:
Depressive symptoms were present in 58.3% of the nursing home residents (n = 81). Depressive status of family members (Chi-square = 1.46, p = 0.23) or family’s visiting frequency (Chi-square = 1.64, p = 0.44) did not differ between residents with or without depressive symptoms. Factors associated with an increased risk of residents having depressive symptoms were age, self-perceived health status, and having a caregiver motivated to visit to assuage their guilt.
Conclusions:
Visiting a family member to assuage their guilt was the only caregiver variable associated with depressive symptoms for nursing home residents. This finding suggests that developing interventions to improve personal relationships between nursing home residents and family members might facilitate the emotional support of caregivers and psychological support for older nursing home residents in Taiwan.
We aim to examine the relation of several folate forms (5-methyltetrahydrofolate (5-mTHF), unmetabolised folic acid (UMFA) and MeFox) with kidney function and albuminuria, which remained uncertain. The cross-sectional study was conducted in 18 757 participants from National Health and Nutrition Examination Survey 2011–2018. The kidney outcomes were reduced estimated glomerular filtration rate (eGFR) (<60 ml/min/1·73 m2), microalbuminuria (albumin:creatinine ratio (ACR) of 30–299 mg/g) and macroalbuminuria (ACR ≥ 300 mg/g). Overall, there were significant inverse associations between serum 5-mTHF and kidney outcomes with significant lower prevalence of reduced eGFR (OR, 0·71; 95 % CI: 0·57, 0·87) and macroalbuminuria (OR, 0·65; 95 % CI: 0·46, 0·91) in participants in quartiles 3–4 (v. quartiles 1–2; both Pfor trend across quartiles <0·05). In contrast, there were significant positive relationship between serum UMFA and kidney outcomes with significant higher prevalence of reduced eGFR in participants in quartiles 2–4 (v. quartile 1; OR, 2·12; 95 % CI: 1·45, 3·12; Pfor trend <0·001) and higher prevalence of macroalbuminuria in participants in quartile 4 (v. quartiles 1–3; OR, 1·46; 95 % CI: 1·06, 2·01; Pfor trend <0·001). However, there was no significant associations of 5-mTHF and UMFA with microalbuminuria. In addition, there were significant positive relationships of serum MeFox with reduced eGFR, microalbuminuria and macroalbuminuria (all Pfor trend <0·01). In conclusion, higher 5-mTHF level, along with lower UMFA and MeFox level, was associated with lower prevalence of kidney outcomes, which may help counsel future clinical trials and nutritional guidelines regarding the folate supplement.
Chest tube drainage placement, a standard procedure in video-assisted thoracoscopic surgery, was reported to cause perioperative complications like pain and increased risk of infection. The present study was designed to evaluate the necessity of chest tube drainage inpaediatric thoracoscopic surgery.
Methods:
Thirty children admitted to our hospital from April 2018 to April 2020 were included in the current study and were grouped as the tube group (children receiving video-assisted thoracoscopic surgery with chest tube drainage) and the non-tube group (children receiving video-assisted thoracoscopic surgery without chest tube drainage). Laboratory hemogram index, length of hospitalisation, post-operative performance of involved children, and psychological acceptance of indicated therapy by guardians of the involved children were investigated.
Results:
Laboratory examination revealed that the mean corpuscular haemoglobin concentration in the non-tube group was significantly higher than that in the tube group on post-operative day 1 (p < 0.05). Children in the non-tube group had a shorter length of hospitalisation (7–9 days) than that of patients from the tube group. Additionally, the frequency of crying of children was decreased and psychological acceptance by patients’ guardians was improved in the non-tube group when compared with the tube group.
Conclusion:
This study showed that chest tube drainage placement may not be necessary in several cases of paediatric video-assisted thoracoscopic surgery. Rapid recovery with decreased perioperative complications in children operated by video-assisted thoracoscopic surgery without tube placement could also reduce the burden of the family and society both economically and psychologically.
We aimed to examine whether baseline neutrophil counts affected the risk of new-onset proteinuria in hypertensive patients, and, if so, whether folic acid treatment is particularly effective in proteinuria prevention in such a setting. A total of 8208 eligible participants without proteinuria at baseline were analysed from the renal substudy of the China Stroke Primary Prevention Trial. Participants were randomised to receive a double-blind daily treatment of 10 mg of enalapril and 0·8 mg of folic acid (n 4101) or 10 mg of enalapril only (n 4107). The primary outcome was new-onset proteinuria, defined as a urine dipstick reading of ≥1+ at the exit visit. The mean age of the participants was 59·5 (sd, 7·4) years, 3088 (37·6 %) of the participants were male. The median treatment duration was 4·4 years. In the enalapril-only group, a significantly higher risk of new-onset proteinuria was found among participants with higher neutrophil counts (quintile 5; ≥4·8 × 109/l, OR 1·44; 95 % CI 1·00, 2·06), compared with those in quintiles 1–4. For those with enalapril and folic acid treatment, compared with the enalapril-only group, the new-onset proteinuria risk was reduced from 5·2 to 2·8 % (OR 0·49; 95 % CI 0·29, 0·82) among participants with higher neutrophil counts (≥4·8 × 109/l), whereas there was no significant effect among those with neutrophil counts <4·8 × 109/l. In summary, among hypertensive patients, those with higher neutrophil counts had increased risk of new-onset proteinuria, and this risk was reduced by 51 % with folic acid treatment.
The hygiene hypothesis posits that the decreased incidence of parasitic infection in developed countries may underlie an increased prevalence of allergic and autoimmune diseases in these countries. As unique inflammation modulator of intracellular parasitism, Trichinella spiralis, or its excretory–secretory (ES) product, shows improved responses to allergies, autoimmune diseases, inflammatory bowel disease, type 1 diabetes, rheumatic arthritis and autoimmune encephalomyelitis by exerting immunomodulatory effects on both innate and adaptive immune cells in animal models. Research has shown that T. spiralis differs from other helminths in manipulation of the host immune response not only by well-known characteristics of its life cycle, but also by its inflammation modulation pathway. How the parasite achieves inflammation modulation has not been fully elucidated yet. This review will generalize the mechanism and focuses on ES immunomodulatory molecules of T. spiralis that may be important for developing new therapeutics for inflammatory disorders.
Having enterprises engaged in environmentally friendly behavior is an important part of reducing negative environmental impacts. This study makes a quantitative analysis against the backdrop of China's transitional economic system. The results show that politically-connected enterprises significantly reduce environmental expenditure, but this only holds for state-owned enterprises; private enterprises with political connections spend significantly more. Analysis of the efficiency of environmental expenditure indicates that, for private enterprises, environmental spending is used as a way to maintain political connections, with rent-seeking as the likely motivation. Politically-connected private enterprises have not reduced their emissions to the same extent as state-owned enterprises, despite increased expenditure. Given the scale of environmental degradation in China during a period of massive economic and social upheaval, the results of this analysis provide a quantitative case for policy change: governments should shift focus to the results that environmental spending produces.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
One of the critical prerequisites for accurately measuring the mechanical properties of profiled fibers is the precise determination of their cross-sectional areas (CSAs). In this study, a new method is established for determining a single profiled fibers’ CSA based on the frozen section method and digital photo, pixel-ratio method (FS-DP). FS-DP is used to obtain a transverse section of a fiber, by acquiring an image of the cross section using optical microscopy or scanning electron microscopy, and then calculating the CSA using Photoshop. Using FS-DP, it was found that the shape of a fiber of silk changes little in a range of 50 μm, but varies considerably over a range of 1 m, while the CSA of cocoon silk (900 m) first increases and then decreases. Mechanical property tests showed that the elongation, strength, elastic modulus, and toughness values of the cocoon silk are consistent with those reported previously. Additionally, FS-DP was also used to observe other profiled fibers. The application tests indicated that FS-DP can be used to quickly and accurately obtain the CSA of a single profiled fiber, and that it is suitable for the large-scale determination and analysis of the mechanical properties of profiled fibers.
Apathy is a condition characterized by a lack of motivation that manifests in emotional, behavioral, and cognitive domains. Although previous studies have indicated that apathy is associated with frontal lesions, few studies have focused on the different subdomains of apathy, and no in vivo human biochemical data have been obtained to examine the neurochemical changes related to apathy in patients with Alzheimer's disease (AD). Thus, we investigated the frontal neurochemical alterations related to apathy among patients with AD using proton magnetic resonance spectroscopy (1H MRS).
Methods:
Apathy was assessed through the Apathy Evaluation Scale (AES). 1H MRS was performed to measure neurochemical metabolite levels in the anterior cingulate region and right orbitofrontal region. Associations between neurochemical metabolites and the total score and subscores of each domain of the AES were analyzed.
Results:
Altogether, 36 patients completed the study. Patients with lower N-acetylaspartate/creatine ratios (NAA/Cr) in the anterior cingulate region demonstrated higher total apathy scores (β = −0.56, p = 0.003) with adjustments for age, gender, educational level, dementia severity, and depression severity. In a further analysis, a lower NAA/Cr in the anterior cingulate region was associated with all subdomains of apathy, including cognition (β = −0.43, p = 0.028), behavior (β = −0.55, p = 0.002), and emotion (β = −0.50, p = 0.005). No statistically significant associations were discovered in the right orbitofrontal region.
Conclusions:
Our results suggest that apathy, in each of its cognitive, behavioral, or emotional subdomains is associated with brain neurochemical alterations in the anterior cingulate region. Abnormal neuronal integrity over the anterior cingulate cortex may exhibit a central role in causing all aspects of apathy in patients with AD.
A series of self-assembled WO3–BiVO4 nanostructured thin films with 17, 25, 50, 67, and 100 mol% WO3 were grown on the (001) yttria-stabilized zirconia (YSZ) substrate by pulsed laser deposition method. The microstructures including crystalline phases, epitaxial relationship, interface structures, and chemical composition distributions were investigated by a combination of various electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectroscopy. The monoclinic BiVO4 formed the matrix, in which WO3 nanopillars were embedded with specific epitaxial relationships. In BiVO4-rich sample, orthorhombic Bi2WO6 was formed. However, metastable hexagonal WO3 phase and orthorhombic WO3 phase coexisted in other composite samples. The thin amorphous layer at the film/substrate interface indicated that the mismatch strain between films and substrate is released. The hydrostatic tensile strain due to thermal expansion mismatch between BiVO4 and WO3 as well as the diffusion of Bi into the WO3 stabilized the metastable h-WO3. A WO3–BiVO4 pseudobinary phase diagram was proposed based on the magnitude of the thermal expansion mismatch and the distance of Bi diffusion, which can be applied to design the microstructures of WO3–BiVO4 heterojunctions and optimize their photoelectrochemical properties.