We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The geometric multigrid method (GMG) is one of the most efficient solving techniques for discrete algebraic systems arising from elliptic partial differential equations. GMG utilizes a hierarchy of grids or discretizations and reduces the error at a number of frequencies simultaneously. Graphics processing units (GPUs) have recently burst onto the scientific computing scene as a technology that has yielded substantial performance and energy-efficiency improvements. A central challenge in implementing GMG on GPUs, though, is that computational work on coarse levels cannot fully utilize the capacity of a GPU. In this work, we perform numerical studies of GMG on CPU-GPU heterogeneous computers. Furthermore, we compare our implementation with an efficient CPU implementation of GMG and with the most popular fast Poisson solver, Fast Fourier Transform, in the cuFFT library developed by NVIDIA.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.