We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to identify patterns of anthropometric trajectories throughout life and to analyse their association with the occurrence of sarcopenia in people from the Longitudinal Study of Adult Health (ELSA-Brasil). It is a cross-sectional study involving 9670 public servants, aged 38–79 years, who answered the call for new data collection and exams, conducted approximately 4 years after the study baseline (2012–2014). Data sequence analysis was used to identify patterns of anthropometric trajectory. A theoretical model was elaborated based on the directed acyclic graph (DAG) to select the variables of minimum adjustment in the analysis of the causal effect between trajectory and sarcopenia. Poisson regression with robust variance was adopted for data analysis. The patterns of change in the anthropometric trajectory were classified in stable weight (T1); change to normal weight (T2); change to excess weight (T3); weight fluctuation (T4) and change to low weight (T5). The prevalence of sarcopenia in men and women who changed the anthropometric path for the low weight was twice as large when compared to participants with a stable weight trajectory. A protective effect of the excess weight trajectory was observed for the occurrence of sarcopenia in them. The results pointed to the need for health policies that encourage the proper management of body components in order to prevent and control obesity, as well as to preserve the quantity and quality of skeletal muscle mass throughout life, especially in older adults.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.