We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most publications on (opto)electronic devices based on 2D materials rely on single monolayers embedded in classical 3D semiconductors, dielectrics and metals. However, heterostructures of different 2D materials can be employed to tailor the performance of the 2D components by reduced defect densities, carrier or exciton transfer processes and improved stability. This translates to additional and unique degrees of freedom for novel device design. The nearly infinite number of potential combinations of 2D layers allows for many fascinating applications. Unlike mechanical stacking, metal-organic vapour phase epitaxy (MOVPE) can potentially provide large-scale highly homogeneous 2D layer stacks with clean and sharp interfaces. Here, we demonstrate the direct successive MOVPE of MoS2/WS2 and WS2/MoS2 heterostructures on 2” sapphire (0001) substrates. Furthermore, the first deposition of large-scale MoS2/graphene and WS2/graphene heterostructures using only MOVPE is presented and the influence of growth time on nucleation of WS2 on graphene is analysed.
Semi-polar (1122) GaN films were grown on (1100) m-plane sapphire substrates. Growth demonstrated surface striations aligned perpendicular to the in-plane GaN m-axis. SiNx interlayers were incorporated into the as-grown films with the purpose of decreasing the density of defects in the material. Inclusion of interlayers increased the characteristic length of surface striations and feature size. X-ray rocking curves widths are shown to be correlated to specific threading dislocation geometry. Skew-symmetric omega scan peak broadening suggests a decrease in the proportion of screw-type dislocations to edge-type dislocations with increasing number of interlayers.
A series of Al0.47Ga0.53N/GaN heterostructures with different AlN interlayer thicknesses ranging from 1nm to 50nm has been examined. It was found that when the interlayer thickness is greater than ∼5nm, it becomes possible to grow 250nm of Al0.47Ga0.53N without cracking. The interlayers are then believed to be sufficiently relaxed to place the AlGaN under compressive strain. The mechanisms for this relaxation have been studied using high angle annular dark field (HAADF) imaging, conventional transmission electron microscopy (TEM), energy-filtered TEM (EFTEM) and electron energy loss spectroscopy (EELS). It is found that relaxation takes place through both the small-scale cracking of the interlayer and the generation of misfit dislocations at the GaN/AlN interface. EELS and EFTEM have been used to probe the Al and Ga content of both the material filling the interlayer cracks, and the interlayer itself. This chemical analysis suggests Ga-rich AlGaN areas inside the interlayer cracks and also significant compositional variations in defect-free interlayer regions. It is observed that relaxation by the generation of misfit dislocations results in an increase in the threading dislocation density of the AlGaN layer, in part due to the bending up of misfit dislocations at crack walls.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.