We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) can detrimentally affect everyday functioning. Neurocognitive impairment (NCI) and current depression are common in people with HIV (PWH) and can contribute to poor functional outcomes, but potential synergies between the two conditions are less understood. Thus, the present study aimed to compare the independent and combined effects of NCI and depression on everyday functioning in PWH. We predicted worse functional outcomes with comorbid NCI and depression than either condition alone.
Methods:
PWH enrolled at the UCSD HIV Neurobehavioral Research Program were assessed for neuropsychological performance, depression severity (≤minimal, mild, moderate, or severe; Beck Depression Inventory-II), and self-reported everyday functioning.
Results:
Participants were 1,973 PWH (79% male; 66% racial/ethnic minority; Age: M = 48.6; Education: M = 13.0, 66% AIDS; 82% on ART; 42% with NCI; 35% BDI>13). ANCOVA models found effects of NCI and depression symptom severity on all functional outcomes (ps < .0001). With NCI and depression severity included in the same model, both remained significant (ps < .0001), although the effects of each were attenuated, and yielded better model fit parameters (i.e., lower AIC values) than models with only NCI or only depression.
Conclusions:
Consistent with prior literature, NCI and depression had independent effects on everyday functioning in PWH. There was also evidence for combined effects of NCI and depression, such that their comorbidity had a greater impact on functioning than either alone. Our results have implications for informing future interventions to target common, comorbid NCI and depressed mood in PWH and thus reduce HIV-related health disparities.
A clinical tool to estimate the risk of treatment-resistant schizophrenia (TRS) in people with first-episode psychosis (FEP) would inform early detection of TRS and overcome the delay of up to 5 years in starting TRS medication.
Aims
To develop and evaluate a model that could predict the risk of TRS in routine clinical practice.
Method
We used data from two UK-based FEP cohorts (GAP and AESOP-10) to develop and internally validate a prognostic model that supports identification of patients at high-risk of TRS soon after FEP diagnosis. Using sociodemographic and clinical predictors, a model for predicting risk of TRS was developed based on penalised logistic regression, with missing data handled using multiple imputation. Internal validation was undertaken via bootstrapping, obtaining optimism-adjusted estimates of the model's performance. Interviews and focus groups with clinicians were conducted to establish clinically relevant risk thresholds and understand the acceptability and perceived utility of the model.
Results
We included seven factors in the prediction model that are predominantly assessed in clinical practice in patients with FEP. The model predicted treatment resistance among the 1081 patients with reasonable accuracy; the model's C-statistic was 0.727 (95% CI 0.723–0.732) prior to shrinkage and 0.687 after adjustment for optimism. Calibration was good (expected/observed ratio: 0.999; calibration-in-the-large: 0.000584) after adjustment for optimism.
Conclusions
We developed and internally validated a prediction model with reasonably good predictive metrics. Clinicians, patients and carers were involved in the development process. External validation of the tool is needed followed by co-design methodology to support implementation in early intervention services.
To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits.
Methods:
Retrospective clinical-pathologic study of 282 participants with Alzheimer’s disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of “I don’t know” (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures.
Results:
43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%–56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%–98%) higher number of IDK responses compared to TDP-43−. At last assessment, compared to TDP-43−, the TDP-43+ group on average missed 31% (CI: 6%–62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06).
Conclusions:
An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.
Under-resourced communities face disaster preparedness challenges. Research is limited for resettled refugee communities, which have unique preparedness needs.
Study Objective:
This study aims to assess disaster preparedness among the refugee community in Clarkston, GA.
Methods:
Twenty-five semi-structured interviews were completed with community stakeholders. Convenience sampling using the snowball method was utilized until thematic saturation was reached. Thematic analysis of interviews was conducted through an inductive, iterative approach by a multidisciplinary team using manual coding and MAXQDA.
Results:
Three themes were identified: First, prioritization of routine daily needs took precedence for families over disaster preparedness. Second, communication impacts preparedness. Community members speak different languages and often do not have proficiency in English. Access to resources in native languages and creative communication tactics are important tools. Finally, the study revealed a unique interplay between government, community-based organizations, and the refugee community. A web of formal and informal responses is vital to helping this community in times of need.
Conclusion:
The refugee community in Clarkston, GA faces challenges, and disaster preparedness may not be top of mind for them. However, clear communication, disaster preparedness planning, and collaboration between government, community-based organizations, and the community are possible areas to focus on to bolster readiness.
Low-temperature FTIR spectroscopy was used to characterize the v(OH) region of kaolin-group minerals including well ordered to poorly ordered kaolins from Georgia, Brazil, and England, along with samples of discrete dickite and nacrite. Low-temperature FTIR spectra were useful in resolving dickite- and nacrite-like features present in the spectra of kaolins when cooled to <30 K. These features were not resolved at room temperature and only partially resolved at liquid N2 temperature (77 K). The room-temperature and low-temperature positions of the ν(OH) bands of kaolinite, dickite, and nacrite were linearly correlated with the interatomic OH⋯O distances and this relationship served as the basis for polytype/disorder identification. Dickite or dickite-like disorder was found in high Hinckley-Index kaolinite from Keokuk, Iowa, and from Cornwall, England. Dickite- and nacrite-like features were observed in both high- and low-Hinckley-index kaolinite and the amounts of these stacking sequences generally increased with decreasing Hinckley Index.
The COVID-19 pandemic accelerated the development of decentralized clinical trials (DCT). DCT’s are an important and pragmatic method for assessing health outcomes yet comprise only a minority of clinical trials, and few published methodologies exist. In this report, we detail the operational components of COVID-OUT, a decentralized, multicenter, quadruple-blinded, randomized trial that rapidly delivered study drugs nation-wide. The trial examined three medications (metformin, ivermectin, and fluvoxamine) as outpatient treatment of SARS-CoV-2 for their effectiveness in preventing severe or long COVID-19. Decentralized strategies included HIPAA-compliant electronic screening and consenting, prepacking investigational product to accelerate delivery after randomization, and remotely confirming participant-reported outcomes. Of the 1417 individuals with the intention-to-treat sample, the remote nature of the study caused an additional 94 participants to not take any doses of study drug. Therefore, 1323 participants were in the modified intention-to-treat sample, which was the a priori primary study sample. Only 1.4% of participants were lost to follow-up. Decentralized strategies facilitated the successful completion of the COVID-OUT trial without any in-person contact by expediting intervention delivery, expanding trial access geographically, limiting contagion exposure, and making it easy for participants to complete follow-up visits. Remotely completed consent and follow-up facilitated enrollment.
Post-traumatic stress disorder (PTSD) after traumatic birth can have a debilitating effect on parents already adapting to significant life changes during the post-partum period. Cognitive therapy for PTSD (CT-PTSD) is a highly effective psychological therapy for PTSD which is recommended in the NICE guidelines (National Institute for Health and Care Excellence, 2018) as a first-line intervention for PTSD. In this paper, we provide guidance on how to deliver CT-PTSD for birth-related trauma and baby loss and how to address common cognitive themes.
Key learning aims
(1) To recognise and understand the development of PTSD following childbirth and baby loss.
(2) To understand how Ehlers and Clark’s (2000) cognitive model of PTSD can be applied to post-partum PTSD.
(3) To be able to apply cognitive therapy for PTSD to patients with perinatal PTSD, including traumatic baby loss through miscarriage or birth.
(4) To discover common personal meanings associated with birth trauma and baby loss and the steps to update them.
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Edited by
Deepak Cyril D'Souza, Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine,David Castle, University of Tasmania, Australia,Sir Robin Murray, Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry