We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A simulation method has been developed to efficiently evaluate the motion of colloidal particles in a low-Reynolds-number confined microchannel flow using a Lagrangian-based approach. In this method, the background velocity within the channel, in the absence of suspended particles, is obtained from a fluid dynamics solver and is used to update the velocity at the particle centres using the Stokesian dynamics (SD) method, which incorporates multi-body hydrodynamic interactions. As a result, instead of computing the momentum of both the fluid and particles throughout the entire computational domain, the microscopic balance equation is solved only at the particle centres, increasing the computational efficiency. To accommodate complex boundary conditions within the SD framework, imaginary particles are placed on the channel walls, allowing the mobility relation to be reformulated to apply velocity constraints to immobilized wall particles. By employing this constrained SD approach, global mobility interactions that need to be computed at each time step are limited to the interior particles, resulting in a significant reduction in computational cost. The efficiency of this study is demonstrated through case studies on particulate flows in contraction and cross-flow microchannels. By using colloidal particles that incorporate Brownian motion and inter-particle attraction, observations through the entire stages of fouling dynamics are possible, from particle inflow to channel blockage. The fouling patterns observed in the simulations are consistent with experiments conducted under the same flow conditions. This study provides an efficient approach for analysing the effect of hydrodynamic interactions on particle dynamics in microfluidics and materials processing fields while allowing for predictions about structural changes over long-time scales, including complex phenomena such as clogging.
OBJECTIVES/GOALS: The objective of this study is to examine the relationship between gastro-intestinal (GI) patients’ health literacy levels and patients’ health outcomes (length of stay, readmission, complication). METHODS/STUDY POPULATION: A research team at the University of Alabama at Birmingham (UAB) ‘s Gastro-Intestinal (GI) surgical department collected inpatient GI patients’ health literacy data by distributing the Brief Health Literacy Screen (BRIEF) survey to patients are about to be discharged. Patients’ health outcomes data were gathered through Business Objects, an online platform that allows physicians and researchers to access and gather patients’ medical information with an IRB approval. After accounting for necessary control variables, logistic regression and multiple linear regression models will be run to assess whether there is a significant relationship between patients’ health literacy levels and patients’ health outcomes. RESULTS/ANTICIPATED RESULTS: Three specific hypotheses are proposed in this study. H1: GI patients’ health literacy levels will be negatively associated with their lengths of stay H2: GI patients’ health literacy levels will be negatively associated with their readmission status to the hospital H3: GI patients’ health literacy levels will be negatively associated with their complication status to the hospital DISCUSSION/SIGNIFICANCE OF IMPACT: This study allows us to further our understanding of patients’ health literacy level and its’ relationship with important health outcomes. By looking at a variety of diverse health outcomes, the impact of a patients’ health literacy level on that patients’ health outcomes will be observed more clearly.
There is limited evidence on the interaction by alcohol dehydrogenase 2 (ADH1B) (rs1229984) and aldehyde dehydrogenase 2 (ALDH2) (rs671) regarding the associations of alcohol and a methyl diet (low folate and high alcohol intake) with cancer risk, partly because of rare polymorphisms in Western populations.
Design:
In a case–control study, we estimated the ORs and 95 % CIs to evaluate the associations of ADH1B and ALDH2 genotypes with colorectal cancer (CRC) and the joint association between methyl diets and ADH1B and ALDH2 polymorphisms with CRC risk using logistic regression models.
Setting:
A hospital-based case–control study.
Participants:
In total, 1001 CRC cases and 899 cancer-free controls admitted to two university hospitals.
Results:
We found that alcohol intake increased the risk of CRC; OR (95 % CI) was 2·02 (1·41, 2·87) for ≥60 g/d drinkers compared with non-drinkers (Ptrend < 0·001). The associations for two polymorphisms with CRC were not statistically significant. However, we found a potential interaction of ALDH2 with methyl diets and CRC. We observed a 9·08-fold (95 % CI 1·93, 42·60) higher risk of CRC for low-methyl diets compared with high-methyl diets among individuals with an A allele of ALDH2, but the association was not apparent among those with ALDH2 GG (Pinteraction = 0·02).
Conclusions:
Our data support the evidence that gene–methyl diet interactions may be involved in CRC risk in East Asian populations, showing that a low-methyl diet increased the risk of CRC among individuals with an A allele of ALDH2.
We investigated potential nosocomial aerosol transmission of severe fever with thrombocytopenia syndrome virus (SFTSV) with droplet precautions. During aerosol generating procedures, SFTSV was be transmitted from person to person through aerosols. Thus, airborne precautions should be added to standard precautions to avoid direct contact and droplet transmission.
Hyperlipidaemia is a major cause of atherosclerosis and related CVD and can be prevented with natural substances. Previously, we reported that a novel Bacillus-fermented green tea (FGT) exerts anti-obesity and hypolipidaemic effects. This study further investigated the hypotriglyceridaemic and anti-obesogenic effects of FGT and its underlying mechanisms. FGT effectively inhibited pancreatic lipase activity in vitro (IC50, 0·48 mg/ml) and ameliorated postprandial lipaemia in rats (26 % reduction with 500 mg/kg FGT). In hypertriglyceridaemic hamsters, FGT administration significantly reduced plasma TAG levels. In mice, FGT administration (500 mg/kg) for 2 weeks augmented energy expenditure by 22 % through the induction of plasma serotonin, a neurotransmitter that modulates energy expenditure and mRNA expressions of lipid metabolism genes in peripheral tissues. Analysis of the gut microbiota showed that FGT reduced the proportion of the phylum Firmicutes in hamsters, which could further contribute to its anti-obesity effects. Collectively, these data demonstrate that FGT decreases plasma TAG levels via multiple mechanisms including inhibition of pancreatic lipase, augmentation of energy expenditure, induction of serotonin secretion and alteration of gut microbiota. These results suggest that FGT may be a useful natural agent for preventing hypertriglyceridaemia and obesity.
We report on the formation of highly flexible and transparent TiO2/Ag/ITO multilayer films deposited on polyethylene terephthalate substrates. The optical and electrical properties of the multilayer films were investigated as a function of oxide thickness. The transmission window gradually shifted toward lower energies with increasing oxide thickness. The TiO2 (40 nm)/Ag (18 nm)/ITO (40 nm) films gave the transmittance of 93.1% at 560 nm. The relationship between transmittance and oxide thickness was simulated using the scattering matrix method to understand high transmittance. As the oxide thickness increased from 20 to 50 nm, the carrier concentration gradually decreased from 1.08 × 1022 to 6.66 × 1021 cm−3, while the sheet resistance varied from 5.8 to 6.1 Ω/sq. Haacke's figure of merit reached a maximum at 40 nm and then decreased with increasing oxide thickness. The change in resistance for the 60 nm-thick ITO single film rapidly increased with increasing bending cycles, while that of the TiO2/Ag/ITO (40 nm/18 nm/40 nm) film remained virtually unchanged during the bending test.
Epidemiological studies have reported that higher education (HE) is associated with a reduced risk of incident Alzheimer's disease (AD). However, after the clinical onset of AD, patients with HE levels show more rapid cognitive decline than patients with lower education (LE) levels. Although education level and cognition have been linked, there have been few longitudinal studies investigating the relationship between education level and cortical decline in patients with AD. The aim of this study was to compare the topography of cortical atrophy longitudinally between AD patients with HE (HE-AD) and AD patients with LE (LE-AD).
Methods:
We prospectively recruited 36 patients with early-stage AD and 14 normal controls. The patients were classified into two groups according to educational level, 23 HE-AD (>9 years) and 13 LE-AD (≤9 years).
Results:
As AD progressed over the 5-year longitudinal follow-ups, the HE-AD showed a significant group-by-time interaction in the right dorsolateral frontal and precuneus, and the left parahippocampal regions compared to the LE-AD.
Conclusion:
Our study reveals that the preliminary longitudinal effect of HE accelerates cortical atrophy in AD patients over time, which underlines the importance of education level for predicting prognosis.
This study examined changes in health-related quality of life (HRQoL) and quality of care (QoC) as perceived by terminally ill cancer patients and a stratified set of HRQoL or QoC factors that are most likely to influence survival at the end of life (EoL).
Method:
We administered questionnaires to 619 consecutive patients immediately after they were diagnosed with terminal cancer by physicians at 11 university hospitals and at the National Cancer Center in Korea. Subjects were followed up over 161.2 person-years until their deaths. We measured HRQoL using the core 30-item European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, and QoC using the Quality Care Questionnaire–End of Life (QCQ–EoL). We evaluated changes in HRQoL and QoC issues during the first three months after enrollment, performing sensitivity analysis by using data generated via four methods (complete case analysis, available case analysis, the last observation carried forward, and multiple imputation).
Results:
Emotional and cognitive functioning decreased significantly over time, while dyspnea, constipation, and pain increased significantly. Dignity-conserving care, care by healthcare professionals, family relationships, and QCQ–EoL total score decreased significantly. Global QoL, appetite loss, and Eastern Cooperative Oncology Group Performance Status (ECOG–PS) scores were significantly associated with survival.
Significance of results:
Future standardization of palliative care should be focused on assessment of these deteriorated types of quality. Accurate estimates of the length of life remaining for terminally ill cancer patients by such EoL-enhancing factors as global QoL, appetite loss, and ECOG–PS are needed to help patients experience a dignified and comfortable death.
Recent studies by a number of research groups have shown that the structure of epitaxial BiFeO3 (BFO) films changes drastically as a function of substrate-induced biaxial compression, with the crystal structure changing from one being nearly rhombohedral (R-like) to one being nearly tetragonal (T-like), where the “T-like” structure is characterized by a highly enhanced c/a ratio of out-of-plane c to in-plane a lattice parameters. In this work, we show that the critical compressive strain σc necessary to induce this transition can be reduced significantly by substituting 10% Ba for Bi [Bi0.9Ba0.1FeO3−δ (BBFO)] and that the “T-like” phase in both BBFO and BFO is stable up to the decomposition temperatures of the films in air. Furthermore, our results show that the BBFO solid solution shows clear ferromagnetic properties in contrast to its undoped BFO counterpart.
We investigated the pressure dependence of the inductive coupled plasma (ICP) oxidation on the electrical characteristics of the thin oxide films. Activation energies and electron temperatures with different pressures were estimated. To demonstrate the pressure effect on the plasma oxide quality, simple N type metal-oxide-semiconductor (NMOS) transistors were fabricated and investigated in a few electrical properties. At higher pressure than 200mTorr, plasma oxide has a slightly higher on-current and a lower interfacial trap density. The on-current gain seems to be related to the field mobility increase and the lower defective interface to the electron temperature during oxidation.
We investigated the reaction of HfCl4 molecules with a H2O terminated Si (001)-2×1 surface using density functional theory to understand the initial stage of atomic layer deposition (ALD) of HfO2. Half monolayer of H2O molecules were adsorbed on the buckled-down Si atoms of the Si dimers of the Si (001)-2×1 surface below the dissociation temperature of H2O and were dissociated into H and OH at room temperature. This process could make uniform and well-aligned −H and −OH’s on the Si (001) substrate. The reaction of a HfCl4 molecule was more favorable with -OH than -H. The reaction of the HfCl4 molecule with the -OH generated a HCl molecule, and the remaining HfCl3 was attached to the O atom. The first reaction of the HfCl4 molecule with −OH produced 0.21 eV energy benefit. The reaction of the second HfCl4 molecule with the most adjacent −OH of the first one produced 0.28 eV energy benefit. The third and fourth molecules showed same tendency with the first and second ones. The energy differences of the fifth and sixth HfCl4 reactions were -0.01 eV, 0.06 eV, respectively. Therefore, we found that the saturation Hf coverage was approximately 5/8 of the available −OH's, which was 2.08 × 1014 Hf/cm2. The result was well-matched with the experimental study of other group.
Density functional theory was used to investigate the adsorption and reaction of HfCl4 with two hydroxyls on Si (001)-2×1 surface in atomic layer deposition (ALD) process. When H2O molecules are adsorbed on Si (001) surface at room temperature, they are dissociated with hydrogens and hydroxyls. There are two dissociation pathways; inter-dimer dissociation and intra-dimer dissociation. The activation energies of these pathways can be converted to the reaction probabilities. It was approximately 2:1. We prepared a reasonable Si substrate which consisted of six inter-dimer dissociated H2O molecules and two intra-dimer dissociated H2O molecules. The HfCl4 must react with two hydroxyls to be a bulk-like structure. There were five reaction pathways where HfCl4 could react with two hydroxyls; inter-dimer, intra-dimer, cross-dimer, inter-row, and cross-row. Inter-row, inter-dimer and intra-dimer were relatively stable among the five reaction pathways based on the energy difference. The electron densities between O and Hf in these three reactions were higher than the others and they had shorter Hf-O and O-O bond lengths than the other two reaction pathways.
The syntxhesis, photo-physics, and electroluminescence of new types of Iridium(III)-encapsulated dendrimers are described. Thus, four different iridium complexes [Ir(III)(C^N)2(LX), Blue-DCBP, Green-DCBP, Yellow-DCBP, and Red-DCBP] with ancillary ligand tethered to the CBP dendritic unit were synthesized and investigated for their photo-physical properties. A large enhancement in electroluminescence performance was observed by using these dendrimers as host/dopant hybrid materials in layered emitting diodes. In particular, host/dopant ratio can be systematically adjusted by varying dendritic generations. These results demonstrate that new Ir(III)-encapsulated dendrimers can be used as potential single-layer materials for organic light emitting diodes. Large difference in the intra-molecular charge transfer phosphorescence quantum yields and electroluminescence effiencies were observed among dendriritic generations.
Carbosilane dendrimers adorned with either triarylamine or carbazole units in their periphery exhibit novel electrochemical behavior in which the electrochemical deposition is controlled by dendrite generation. In addition, the deposited layers remained intact in the depositing solvent, methylene chloride, allowing a second layer to be deposited on top of the first layer. We have sought to establish the suitability of this electrochemical deposition technique for use in the construction of multi-layer OLEDs, which cannot be fabricated via conventional spin-coating with a polymeric precursor. Thus, the electrochemical deposition-based process could potentially offer an ideal combination of deposition control on the one hand and multi-layer fabrication on the other. We report herein the novel electrochemical deposition behavior of arylamine or carbazole end-capped carbosilane dendrimers of the type GnNPB or GnCBP (n = 1-4) and their use for the formation of multi-layer devices for OLEDs.
The thermal degradation behavior of indium tin oxide (ITO) thin films coated on glass substrates using radio frequency (rf) magnetron sputtering was investigated over the temperature range of 100–400 °C in air. The resistivity of ITO films increases abruptly after the thermal degradation temperature of 250 °C is reached, with a slight increase from 200 to 250 °C. The x-ray photoelectron spectrometry intensity ratio of O/(In + Sn) in thermally degraded ITO films is higher than that in normal films. The carrier concentration gradually decreases up to 200 °C, sharply drops between 200 and 250 °C with increasing temperature, and then saturates from 275 °C. The Hall mobility drops suddenly at 275 °C. The diffusion of oxygen into oxygen interstitials and oxygen vacancies and the chemisorption of oxygen into grain boundaries decrease the carrier concentration and the Hall mobility, respectively. The former mainly affects the resistivity of ITO films below 250 °C, and the later above 250 °C.
The structural properties of GaN epitaxial layers grown on patterned sapphire substrates by MOCVD have been investigated using HRXRD(high-resolution X-ray diffraction), GIXRD(grazing incidence X-ray diffraction) and PL(photoluminescence). For X-ray characterizations rocking curves for GaN (10·5), (00·2), (11·4) and (11·0) reflections for which incidence angles of X-rays are 32.0°, 17.3°, 11.0° and 0.34°, respectively, were measured. For (10·5), (00·2) and (11·4) reflections FWHMs of the rocking curves for a patterned substrate were broader than those for a unpatterned substrate, for (11·0) reflection, however, FWHM for a patterned substrate was much narrower than that for a unpatterned substrate. The normalized FWHM for all reflections decreases as the incidence angle of X-ray decreases. The results indicate that the crystalline quality in the surface region of the epilayer on a patterned substrate was especially improved because the penetration depth of X-ray depends on the incidence angle. The intensity of PL peak of the epilayer for a patterned substrate increased compared to that for a unpatterned substrate, and the increase in PL intensity is attributed to the reduction in dislocation density at the surface region revealed the by X-ray results.
This paper describes the growth kinetics of an interfacial MgO layer as well as those of an MgB2 layer during ex situ annealing of the evaporated amorphous boron (a-B) film under Mg vapor overpressure. A thin MgO layer is formed at the interface between a-B and Al2O3 substrate before the formation of crystalline MgB2 layer and the interfacial layer is epitaxially related with Al2O3 substrate (MgO (111)[110] // Al2O3 (0001)[1100]). The interfacial MgO layer continues to grow during the annealing, and its apparent growth rate is about 0.1 nm/min. The analysis of MgB2 layer growth kinetics using cross-sectional transmission electron microscopy reveals that there exist two distinct growth fronts at both sides of an MgB2 layer. The growth kinetics of the lower MgB2 layer obeys the parabolic rate law during the entire annealing time. The growth of the upper MgB2 layer is controlled by the surface reaction between out-diffused boron and Mg vapor up to 10 min, resulting in a rough surface morphology of MgB2 layer. By considering the mass balance of Mg and boron during ex situ annealing, we obtained the diffusivities of Mg and boron in MgB2 layer which were in the same order range of approximately 10−12 cm2/s.
The reaction sequence and microstructure evolution of a crystalline MgB2 layer were examined during ex situ annealing of evaporated amorphous boron (a-B) with Mg vapor. Mg was found to migrate rapidly into the a-B layer in the initial stage of reaction with a uniform concentration of about 12 at.%. A thin layer of crystalline MgO was observed at the interface between a-B and the Al2O3 substrate. It was identified that an MgB2 layer started to form at the surface by the nucleation and growth process in polycrystalline form. It appears that there exists two distinct growth fronts in the MgB2 layer: one lying at the surface and the other lying at the interface between the MgB2 layer and the a-B. The microstructural evolution of this layer showed significant differences depending on the location of these two growth fronts.
The electrical characteristics of SiH4-based PECVD gate oxide have been investigated with respect to gate oxide integrity (GOI) and its reliability. It was found that the GOI of poly-Si TFT integrated on glass substrate strongly depended on the charge trapping and deep level interface states generation under Fowler-Nordheim stress (FNS). By applying elevated temperature postanneal without vacuum break after the gate oxide deposition, highly reliable gate oxide was obtained. Under FNS, ID-VG curve showed severe shift and degradation of subthreshold slope, which were reduced by adopting post-annealed gate oxide. Besides, the TFT with post-annealed gate oxide showed around 10 times higher charge to breakdown than that of as-deposited gate oxide. Charge to breakdown of MOS capacitors were also studied. By applying post-annealed gate oxide, charge to breakdown drastically improved, which could be explained by reduced charge trapping under FNS.