We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To study a cluster of Mycobacterium wolinskyi surgical site infections (SSIs).
Design
Observational and case-control study.
Setting
Academic hospital.
Patients.
Subjects who developed SSIs with M. wolinskyi following cardiothoracic surgery.
Methods
Electronic surveillance was performed for case finding as well as electronic medical record review of infected cases. Surgical procedures were observed. Medical chart review was conducted to identify risk factors. A case-control study was performed to identify risk factors for infection; Fisher exact or Kruskal-Wallis tests were used for comparisons of proportions and medians, respectively. Patient isolates were studied using pulsed-field gel electrophoresis (PFGE). Environmental microbiologic sampling was performed in operating rooms, including high-volume water sampling.
Results
Six definite cases of M. wolinskyi SSI following cardiothoracic surgery were identified during the outbreak period (October 1, 2008–September 30, 2011). Having cardiac surgery in operating room A was significantly associated with infection (odds ratio, 40; P = .0027). Observational investigation revealed a cold-air blaster exclusive to operating room A as well a microbially contaminated, self-contained water source used in heart-lung machines. The isolates were indistinguishable or closely related by PFGE. No environmental samples were positive for M. wolinskyi.
Conclusions
No single point source was established, but 2 potential sources, including a cold-air blaster and a microbially contaminated, self-contained water system used in heart-lung machines for cardiothoracic operations, were identified. Both of these potential sources were removed, and subsequent active surveillance did not reveal any further cases of M. wolinskyi SSI.
Infect Control Hosp Epidemiol 2014;35(9):1169-1175
Develop and implement an effective program for hazard analysis and control of waterborne pathogens at a multicampus hospital with clinics.
Design.
A longitudinal study. Several-year study including analysis of results from monitoring and tests of 26 building water systems.
Setting.
Outpatient and inpatient healthcare facilities network.
Methods.
The hazard analysis and critical control point (HACCP) process was used to develop a water management program (WMP) for the hospital campuses. The HACCP method systematically addressed 3 questions: (1) What are the potential waterborne hazards in the building water systems of these facilities? (2) How are the hazards being controlled? (3) How do we know that the hazards have been controlled? Microbiological and chemical tests of building water samples were used to validate the performance of the WMP; disease surveillance data further validated effective hazard control.
Results.
Hazard analysis showed that waterborne pathogens were generally in good control and that the water quality was good in all facilities. The hospital network has had several legionellosis cases that were identified as presumptive hospital acquired, but none was confirmed or substantiated by water testing in follow-up investigations. Building water system studies unrelated to these cases showed that pressure tanks and electronic automatic faucets required additional hazard control.
Conclusions.
Application of the HACCP process for long-term building water systems management was practical and effective. The need for critical control point management of temperature, flow, and oxidant (chlorine) residual concentration was emphasized. The process resulted in discovery of water system components requiring additional hazard control.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.