We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Embedding mandatory investment guarantees in individual retirement accounts (IRAs) can protect workers from equity market shortfalls, but policymakers must understand the economic costs of such guarantees as well as their incidence. Using a life cycle model calibrated for Germany, where investors have access to stocks, bonds, and tax-qualified IRAs, we show that abandoning the guarantee could enhance old-age consumption for over 75% of retirees without harming pre-retirement consumption. Investors averse to equity losses accumulate only moderately more in guaranteed accounts, as these offer only limited protection against market crashes.
Preliminary evidence suggests that a ketogenic diet may be effective for bipolar disorder.
Aims
To assess the impact of a ketogenic diet in bipolar disorder on clinical, metabolic and magnetic resonance spectroscopy outcomes.
Method
Euthymic individuals with bipolar disorder (N = 27) were recruited to a 6- to 8-week single-arm open pilot study of a modified ketogenic diet. Clinical, metabolic and MRS measures were assessed before and after the intervention.
Results
Of 27 recruited participants, 26 began and 20 completed the ketogenic diet. For participants completing the intervention, mean body weight fell by 4.2 kg (P < 0.001), mean body mass index fell by 1.5 kg/m2 (P < 0.001) and mean systolic blood pressure fell by 7.4 mmHg (P < 0.041). The euthymic participants had average baseline and follow-up assessments consistent with them being in the euthymic range with no statistically significant changes in Affective Lability Scale-18, Beck Depression Inventory and Young Mania Rating Scale. In participants providing reliable daily ecological momentary assessment data (n = 14), there was a positive correlation between daily ketone levels and self-rated mood (r = 0.21, P < 0.001) and energy (r = 0.19 P < 0.001), and an inverse correlation between ketone levels and both impulsivity (r = −0.30, P < 0.001) and anxiety (r = −0.19, P < 0.001). From the MRS measurements, brain glutamate plus glutamine concentration decreased by 11.6% in the anterior cingulate cortex (P = 0.025) and fell by 13.6% in the posterior cingulate cortex (P = <0.001).
Conclusions
These findings suggest that a ketogenic diet may be clinically useful in bipolar disorder, for both mental health and metabolic outcomes. Replication and randomised controlled trials are now warranted.
This study identifies two previously unrecognised screech modes in non-axisymmetric jets. Spectral proper orthogonal decomposition (SPOD) of ultra-high-speed schlieren images reveals a bi-axial flapping mode in a rectangular jet and a quasi-helical mode in an elliptical jet. To educe the complex three-dimensional structure of these new modes, SPOD is performed on datasets from different viewing perspectives, produced by rotating the nozzle with respect to the schlieren path to an azimuthal angle $\theta$. The bi-axial flapping mode is strongly antisymmetric from any perspective. However, the SPOD eigenvalue at the screech frequency ($\lambda _s$) varies with $\theta$ and the axial distance of the SPOD domain from the nozzle lip. This mode most closely resembles a flapping mode in the minor-axis plane close to the nozzle lip and a wagging mode in the major-axis plane further downstream. This transition from flapping to wagging at the same frequency correlates with the axis switching defined by the shock-cell structure in the mean flow. The quasi-helical mode in the elliptical jet is characterised by an antisymmetric structure present in the SPOD spatial modes whose eigenvalue $\lambda _s$ is insensitive to both $\theta$ and the axial domain. These findings indicate that the spatial evolution of the mean flow in non-axisymmetric jets may allow them to support a range of additional screech modes that differ significantly from those supported by the original three-dimensional shape of the jet.
This work presents models for the behaviour of both upstream- and downstream-travelling waves in screeching elliptical jets. Proper orthogonal decomposition is performed on experimental velocity data in both the major and minor axis planes, for an aspect ratio $AR=2$ converging elliptical jet operating at nozzle pressure ratios of $2.6$ and $3.4$. From this decomposition, the radial and axial structure of the guided-jet mode (GJM) and the Kelvin–Helmholtz instability are educed. Linear-stability analysis (LSA) is performed using both the experimentally obtained mean flow, and one obtained using Reynolds-averaged Navier–Stokes (RANS) at matched conditions. It is shown that the wavenumber predicted by LSA for both waves are within the range of experimentally observed wavenumbers. Furthermore, the model accurately predicts the structure of these waves at multiple axial locations, using either the experimental or RANS mean flow. Most critically, it is demonstrated that the GJM is only predicted to be neutrally stable at the screech frequency for a relatively limited streamwise domain, the size and location of which is dependent on the nozzle pressure ratio. A comparison with the amplitude envelope for the GJM extracted from the experimental measurements indicates that the maximum fluctuations associated with the GJM are collocated with this region of the flow that is predicted to support the GJM. While there have been extensive discussions about the frequency dependence of the GJM, this is the first demonstration that its existence is highly dependent on streamwise position within the flow.
Guided-jet waves have been shown to close resonance loops in a myriad of problems such as screech and impingement tones in jets. These discrete, upstream-travelling waves have long been identified in linear-stability models of jet flows, but in this work they are instead considered in the context of an acoustic-scattering problem. It is shown that the guided-jet mode results from total internal reflection and transmission of acoustic waves, arising from the shear layer behaving like a duct with some given wall impedance. After total reflection, only discrete streamwise wavenumbers may be supported by the flow, with these wavenumbers dictated by the fact that the standing wave formed inside of the jet must fit between the two shear layers. Close to the sonic line, the transmission of this mode to the outside is maximum, leading to a net-energy flux directed upstream, which dictates the direction of propagation of this mode, providing a clear connection to the better understood soft-duct mode (Towne et al., J. Fluid Mech., vol. 825, 2017, pp. 1113–1152). The model also indicates that these waves are generated in the core of the flow and can only be efficiently transmitted to the quiescent region under certain conditions, providing an explanation as to why screech is only observed at conditions where the discrete mode is supported by the flow. The present results explain, for the first time, the nature and characteristics of the guided-jet waves.
There is currently considerable interest in the guided-jet mode, as a result of recent works demonstrating it being the upstream component of various resonant systems in high-speed flows. For given jet operating conditions, the mode is known to exist over only a finite-frequency range that, for a twin-jet system, has been observed to vary with both jet separation and solution symmetry. Vortex-sheet and finite-thickness linear stability models are here employed to consider the behaviour of the guided-jet mode as the two jets are brought together, for both a planar and round twin-jet system. It is demonstrated that in both cases as the twin-jet system merges it forms a higher-order mode of an equivalent single-jet geometry. This then imposes a constraint on the guided-jet mode as the finite-frequency range must change to meet that of the equivalent geometry the system merges to, explaining the previously observed dependence on jet separation.
Linear stability theory (LST) is often used to model the large-scale flow structures in the turbulent mixing region and near pressure field of high-speed jets. For perfectly expanded single round jets, these models predict the dominance of azimuthal wavenumbers $m=0$ and $m = 1$ helical modes for the lower frequency range, in agreement with empirical data. When LST is applied to twin-jet systems, four solution families appear following the odd/even behaviour of the pressure field about the symmetry planes. The interaction between the unsteady pressure fields of the two jets also results in their coupling. The individual modes of the different solution families no longer correspond to helical motions, but to flapping oscillations of the jet plumes. In the limit of large jet separations, when the jet coupling vanishes, the eigenvalues corresponding to the $m=1$ mode in each family are identical, and a linear combination of them recovers the helical motion. Conversely, as the jet separation decreases, the eigenvalues for the $m=1$ modes of each family diverge, thus favouring a particular flapping oscillation over the others and preventing the appearance of helical motions. The dominant mode of oscillation for a given jet Mach number $M_j$ and temperature ratio $T_R$ depends on the Strouhal number $St$ and jet separation $s$. Increasing both $M_j$ and $T_R$ independently is found to augment the jet coupling and modify the $(St,s)$ map of the preferred oscillation mode. Present results predict the preference of two modes when the jet interaction is relevant, namely varicose and especially sinuous flapping oscillations on the nozzles’ plane.
Obesity is one of the major contributors to the excess mortality seen in people with severe mental illness (SMI) and in low- and middle-income countries people with SMI may be at an even greater risk. In this study, we aimed to determine the prevalence of obesity and overweight in people with SMI and investigate the association of obesity and overweight with sociodemographic variables, other physical comorbidities, and health-risk behaviours. This was a multi-country cross-sectional survey study where data were collected from 3989 adults with SMI from three specialist mental health institutions in Bangladesh, India, and Pakistan. The prevalence of overweight and obesity was estimated using Asian BMI thresholds. Multinomial regression models were then used to explore associations between overweight and obesity with various potential determinants. There was a high prevalence of overweight (17·3 %) and obesity (46·2 %). The relative risk of having obesity (compared to normal weight) was double in women (RRR = 2·04) compared with men. Participants who met the WHO recommendations for fruit and vegetable intake had 2·53 (95 % CI: 1·65–3·88) times greater risk of having obesity compared to those not meeting them. Also, the relative risk of having obesity in people with hypertension is 69 % higher than in people without hypertension (RRR = 1·69). In conclusion, obesity is highly prevalent in SMI and associated with chronic disease. The complex relationship between diet and risk of obesity was also highlighted. People with SMI and obesity could benefit from screening for non-communicable diseases, better nutritional education, and context-appropriate lifestyle interventions.
Recent evidence from case reports suggests that a ketogenic diet may be effective for bipolar disorder. However, no clinical trials have been conducted to date.
Aims
To assess the recruitment and feasibility of a ketogenic diet intervention in bipolar disorder.
Method
Euthymic individuals with bipolar disorder were recruited to a 6–8 week trial of a modified ketogenic diet, and a range of clinical, economic and functional outcome measures were assessed. Study registration number: ISRCTN61613198.
Results
Of 27 recruited participants, 26 commenced and 20 completed the modified ketogenic diet for 6–8 weeks. The outcomes data-set was 95% complete for daily ketone measures, 95% complete for daily glucose measures and 95% complete for daily ecological momentary assessment of symptoms during the intervention period. Mean daily blood ketone readings were 1.3 mmol/L (s.d. = 0.77, median = 1.1) during the intervention period, and 91% of all readings indicated ketosis, suggesting a high degree of adherence to the diet. Over 91% of daily blood glucose readings were within normal range, with 9% indicating mild hypoglycaemia. Eleven minor adverse events were recorded, including fatigue, constipation, drowsiness and hunger. One serious adverse event was reported (euglycemic ketoacidosis in a participant taking SGLT2-inhibitor medication).
Conclusions
The recruitment and retention of euthymic individuals with bipolar disorder to a 6–8 week ketogenic diet intervention was feasible, with high completion rates for outcome measures. The majority of participants reached and maintained ketosis, and adverse events were generally mild and modifiable. A future randomised controlled trial is now warranted.
It is acknowledged that health technology assessment (HTA) is an inherently value-based activity that makes use of normative reasoning alongside empirical evidence. But the language used to conceptualise and articulate HTA's normative aspects is demonstrably unnuanced, imprecise, and inconsistently employed, undermining transparency and preventing proper scrutiny of the rationales on which decisions are based. This paper – developed through a cross-disciplinary collaboration of 24 researchers with expertise in healthcare priority-setting – seeks to address this problem by offering a clear definition of key terms and distinguishing between the types of normative commitment invoked during HTA, thus providing a novel conceptual framework for the articulation of reasoning. Through application to a hypothetical case, it is illustrated how this framework can operate as a practical tool through which HTA practitioners and policymakers can enhance the transparency and coherence of their decision-making, while enabling others to hold them more easily to account. The framework is offered as a starting point for further discussion amongst those with a desire to enhance the legitimacy and fairness of HTA by facilitating practical public reasoning, in which decisions are made on behalf of the public, in public view, through a chain of reasoning that withstands ethical scrutiny.
Spatial linear stability analysis is used to study the axisymmetric screech tones generated by twin converging round nozzles at low supersonic Mach numbers. Vortex-sheet and finite-thickness models allow for identification of the different waves supported by the flow at different conditions. Regions of the frequency–wavenumber domain for which the upstream-propagating guided jet modes are observed to be neutrally stable are observed to vary as a function of solution symmetry, jet separation, $S$, and the velocity profile used. Screech-frequency predictions performed using wavenumbers obtained from both models agree well with experimental data. Predictions obtained from the finite-thickness model better align with the screech tones measured experimentally and so are seen to be an improvement on predictions made with the vortex sheet. Additionally, results from the finite-thickness model predict both symmetric and antisymmetric screech tones for low $S$ that are found in the vortex-sheet model only at greater $S$. The present results indicate that the feedback loop generating these screech tones is similar to that observed for single-jet resonance, with equivalent upstream and downstream modes.
We investigate the intermittency of the coupling behaviour in screeching twin round supersonic jets at low Mach numbers across a range of nozzle spacings. Application of proper orthogonal decomposition combined with time-frequency wavelet analysis and spectral proper orthogonal decomposition shows that intermittency can manifest in twin jets as either a competition between the two symmetries, or the jets uncoupling and recoupling. The time scales on which symmetry switching occurs can vary strongly, ranging from $O(10^2)$ to $O(10^3)$ screech cycles. A transition from one symmetry to another is accompanied by a slight change in the screech frequency ranging from 0.30 % to 0.63 %. It was observed that complete uncoupling occurred only at the largest nozzle spacing of $s/D=6$ and at Mach numbers close to modal staging. When the jets are uncoupled they screech at slightly different frequencies, with a disparity of approximately 0.6 %. The coupling is particularly intermittent in the transition from the A1 to A2 branch, where the A2 mode is first observed, and tends toward steady coupling with increasing Mach number.
OBJECTIVES/GOALS: Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors that are driven by populations of cancer stem cells (CSCs). In this study, we perform an epigenetic-focused functional genomics screen in GBM organoids and identify WDR5 as an essential epigenetic regulator in the SOX2-enriched, therapy resistant cancer stem cell niche. METHODS/STUDY POPULATION: Despite their importance for tumor growth, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy resistant niche. Our niche-specific screens identified WDR5, an H3K4 histone methyltransferase responsible for activating specific gene expression, as indispensable for GBM CSC growth and survival. RESULTS/ANTICIPATED RESULTS: In GBM CSC models, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, required for stem cell maintenance and including the POU5F1(OCT4)::SOX2 motif. We incorporated a SOX2/OCT4 motif driven GFP reporter system into our CSC cell models and found that WDR5 inhibitor treatment resulted in dose-dependent silencing of stem cell reporter activity. Further, WDR5 inhibitor treatment altered the stem cell state, disrupting CSC in vitro growth and self-renewal as well as in vivo tumor growth. DISCUSSION/SIGNIFICANCE: Our results unveiled the role of WDR5 in maintaining the CSC state in GBM and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers. This conceptual and experimental framework can be applied to many cancers, and can unmask unique microenvironmental biology and rationally designed combination therapies.
To provide comprehensive population-level estimates of the burden of healthcare-associated influenza.
Design:
Retrospective cross-sectional study.
Setting:
US Influenza Hospitalization Surveillance Network (FluSurv-NET) during 2012–2013 through 2018–2019 influenza seasons.
Patients:
Laboratory-confirmed influenza-related hospitalizations in an 8-county catchment area in Tennessee.
Methods:
The incidence of healthcare-associated influenza was determined using the traditional definition (ie, positive influenza test after hospital day 3) in addition to often underrecognized cases associated with recent post-acute care facility admission or a recent acute care hospitalization for a noninfluenza illness in the preceding 7 days.
Results:
Among the 5,904 laboratory-confirmed influenza-related hospitalizations, 147 (2.5%) had traditionally defined healthcare-associated influenza. When we included patients with a positive influenza test obtained in the first 3 days of hospitalization and who were either transferred to the hospital directly from a post-acute care facility or who were recently discharged from an acute care facility for a noninfluenza illness in the preceding 7 days, we identified an additional 1,031 cases (17.5% of all influenza-related hospitalizations).
Conclusions:
Including influenza cases associated with preadmission healthcare exposures with traditionally defined cases resulted in an 8-fold higher incidence of healthcare-associated influenza. These results emphasize the importance of capturing other healthcare exposures that may serve as the initial site of viral transmission to provide more comprehensive estimates of the burden of healthcare-associated influenza and to inform improved infection prevention strategies.
Shock-containing supersonic jets undergoing resonance processes are challenging from both a measurement and simulation perspective. These jets are host to a broad range of complex fluid phenomena: intense acoustic waves, turbulence, wavepackets and strong shock waves. Strong shocks present a challenge to both the experimental and numerical researcher. In the paper of Léon et al. (J. Fluid Mech., vol. 947, 2022, A36), a novel optical technique based on multi-axis digital holographic interferometry is applied to the study of a highly underexpanded screeching jet, producing density measurements of unprecedented clarity and resolution. Where prior studies have been restricted to extrapolating the three-dimensional field from two-dimensional slices or projections, in this work the authors directly measure the three-dimensional helical structure of the wavepacket associated with jet screech.
The 2020 presidential election brought expanded vote-by-mail opportunities, a rise in attacks on this process’s integrity, and the implementation of novel programs such as California’s Where’s My Ballot? system to ensure confidence in mail balloting. Can heightening awareness of this ballot-tracking system and other election protections alleviate fraud concerns and raise turnout? We assess whether messages reinforcing election integrity increased participation in the 2020 election through a large-scale voter mobilization field experiment. California registrants were mailed a letter that described either existing safeguards to prevent vote-by-mail fraud or the ability to track one’s ballot and ensure that it was counted. Analysis of state voter records reveals that neither message increased turnout over a simple election reminder or even no contact, even among subgroups where larger effects might be expected. In the context of a high-profile, high-turnout presidential election, assurances about ballot and electoral integrity did not increase turnout.
The shame system appears to be natural selection's solution to the adaptive problem of information-triggered reputational damage. Over evolutionary time, this problem would have led to a coordinated set of adaptations – the shame system – designed to minimise the spread of negative information about the self and the likelihood and costs of being socially devalued by others. This information threat theory of shame can account for much of what we know about shame and generate precise predictions. Here, we analyse the behavioural configuration that people adopt stereotypically when ashamed – slumped posture, downward head tilt, gaze avoidance, inhibition of speech – in light of shame's hypothesised function. This behavioural configuration may have differentially favoured its own replication by (a) hampering the transfer of information (e.g. diminishing audiences’ tendency to attend to or encode identifying information – shame camouflage) and/or (b) evoking less severe devaluative responses from audiences (shame display). The shame display hypothesis has received considerable attention and empirical support, whereas the shame camouflage hypothesis has to our knowledge not been advanced or tested. We elaborate on this hypothesis and suggest directions for future research on the shame pose.
A higher proportion of people in prison have a history of traumatic brain injury (TBI) than the general population. However, little is known about potentially related persistent symptoms in this population.
Aims:
To compare symptom reporting in men with and without a history of TBI following admission to a correctional facility.
Methods:
All men transferred to the South Auckland Correctional Facility in New Zealand complete a lifetime TBI history and the Rivermead Post-Concussion Symptom Questionnaire (RPQ) as part of their routine health screen. Data collected between June 2020 and March 2021 were extracted and anonymised. Participants were classified as reporting at least one TBI in their lifetime or no TBI history. The underlying factor structure of the RPQ was determined using principal components analysis. Symptom scores between those with and without a TBI history were compared using Mann Whitney U tests.
Results:
Of the N = 363 adult male participants, 240 (66%) reported experiencing at least one TBI in their lifetime. The RPQ was found to have a two-factor structure (Factor 1: cognitive, emotional, behavioural; Factor 2: visual-ocular) explaining 61% of the variance. Men reporting a TBI history had significantly higher cognitive, emotional and behavioural (U = 50.4, p < 0.001) and visuo-ocular symptoms (U = 68.5, p < 0.001) in comparison to men reporting no TBI history.
Conclusion:
A history of TBI was associated with higher symptom burden on admission to a correctional facility. Screening for TBI history and current symptoms on admission may assist prisoners experiencing persistent effects of TBI to access rehabilitation.
This paper describes the mechanism underpinning modal staging behaviour in screeching jets. An upstream-propagating subsonic guided-jet mode is shown to be active in all stages of screech. Axial variation of shock-cell spacing manifests in the spectral domain as a series of suboptimal peaks. It is demonstrated that the guided-jet mode may be energized by interactions of the Kelvin–Helmholtz wavepacket with not only the primary shock wavenumber peak, but also suboptimal peaks; interaction with suboptimals is shown to be responsible for closing the resonance loop in multiple stages of jet screech. A consideration of the full spectral representation of the shocks reconciles several of the classical models and results for jet screech that had heretofore been paradoxical. It is demonstrated that there are multiple standing waves present in the near field of screeching jets, corresponding to the superposition of the various waves active in these jets. Multimodal behaviour is explored for jets in a range of conditions, demonstrating that multiple peaks in the frequency spectra can be due to either changes in which peak of the shock spectra the Kelvin–Helmholtz wavepacket is interacting with, or a change in azimuthal mode, or both. The absence of modal staging in high-aspect-ratio non-axisymmetric jets is also explained in the context of the aforementioned mechanism. The paper closes with a new proposed theory for frequency selection in screeching jets, based on the observation that these triadic interactions appear to underpin selection of the guided-jet mode wavelength in all measured cases.
An investigation of shock diffraction through a non-quiescent background medium is presented using both experimental and numerical techniques. Unlike diffracting shocks in quiescent media, a spatial distortion of the shock front occurs, producing a region of constant shock angle. An example of this process arises in the exhaust from a pulse-detonation combustor. As the background velocity is increased, such as through the inclusion of a converging nozzle at the exhaust, the spatial distortion becomes more apparent. Numerical simulations using a compressible Euler solver demonstrate that the distortion is not due to the geometrical influence of the nozzle, but rather is a function of the magnitude of the background flow velocity. The distortion is studied using a modified geometrical shock dynamics formulation which includes the background flow and is validated against experiments. A simple model is presented to predict the shock distortion angle in the weak-shock limit. Finally, the axial decay behaviour of the shock is investigated and it is shown that the advection of the shock by the background flow delays the arrival of the head and tail of the expansion characteristic at the centreline. This leads to an increase in the rate of decay of the shock Mach number as the background flow velocity is increased.