We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Identification of the predominant polarity, i.e. hypomanic/manic (mPP) or depressive predominant polarity (dPP), might help clinicians to improve personalised management of bipolar disorder.
Aims
We performed a systematic review and meta-analysis to estimate prevalence and correlates of mPP and dPP in bipolar disorder.
Method
The protocol was registered in the Open Science Framework Registries (https://doi.org/10.17605/OSF.IO/8S2HU). We searched main electronic databases up to December 2023 and performed random-effects meta-analyses of weighted prevalence of mPP and dPP. Odds ratios and weighted mean differences (WMDs) were used for relevant correlates.
Results
We included 28 studies, providing information on rates and/or correlates of mPP and dPP. We estimated similar rates of mPP (weighted prevalence = 30.0%, 95% CI: 23.1 to 37.4%) and dPP (weighted prevalence = 28.5%, 95% CI: 23.7 to 33.7%) in bipolar disorder. Younger age (WMD = −3.19, 95% CI: −5.30 to −1.08 years), male gender (odds ratio = 1.39, 95% CI: 1.10 to 1.76), bipolar-I disorder (odds ratio = 4.82, 95% CI: 2.27 to 10.24), psychotic features (odds ratio = 1.56, 95% CI: 1.01 to 2.41), earlier onset (WMD = −1.57, 95% CI: −2.88 to −0.26 years) and manic onset (odds ratio = 13.54, 95% CI: 5.83 to 31.46) were associated with mPP (P < 0.05). Depressive onset (odds ratio = 12.09, 95% CI: 6.38 to 22.90), number of mood episodes (WMD = 0.99, 95% CI: 0.28 to 1.70 episodes), history of suicide attempts (odds ratio = 2.09, 95% CI: 1.49 to 2.93) and being in a relationship (odds ratio = 1.98, 95% CI: 1.22 to 3.22) were associated with dPP (P < 0.05). No differences were estimated for other variables.
Conclusions
Despite some limitations, our findings support the hypothesis that predominant polarity might be a useful specifier of bipolar disorder. Evidence quality was mixed, considering effects magnitude, consistency, precision and publication bias. Different predominant polarities may identify subgroups of patients with specific clinical characteristics.
The balance between neurotoxic and neuroprotective effects of kynurenine pathway (KP) components has been recently proposed as a key element in the pathophysiology of bipolar disorder (BD) and related mood episodes. This comprehensive overview explored the link of KP with symptom severity and other clinical features of BD.
Methods
We searched Medline, Embase, and PsycInfo electronic databases for studies assessing the association of peripheral and/or central concentrations of KP metabolites with putative clinical features, including symptom severity and other clinical domains in BD.
Results
We included the findings of 13 observational studies investigating the possible variations of KP metabolites according to symptom severity, psychotic features, suicidal behaviors, and sleep disturbances in BD. Studies testing the relationship between KP metabolites and depression severity generated mixed and inconsistent findings. No statistically significant correlations with manic symptoms were found. Moreover, heterogeneous variations of the KP across different clinical domains were shown. Few available studies found (a) higher levels of cerebrospinal fluid kynurenic acid and lower of plasma quinolinic acid in BD with psychotic features, (b) lower central and peripheral picolinic acid levels in BD with suicide attempts, and (c) no significant correlations between KP metabolites and BD-related sleep disturbances.
Conclusions
An imbalance of KP metabolism toward the neurotoxic branches is likely to occur in people with BD, though evidence on variations according to specific clinical features of BD is less clear. Additional research is needed to clarify the role of KP in the etiopathogenesis of BD and related clinical features.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.