We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The functioning and richness of marine systems (and biological interactions such as parasitism) are continuously influenced by a changing environment. Using hierarchical modelling of species communities (HMSC), the presence and abundance of multiple parasite species of the black-spotted croaker, Protonibea diacanthus (Sciaenidae), was modelled against environmental measures reflecting seasonal change. Protonibea diacanthus were collected in three seasons across 2019–2021 from four locations within the waters of the Northern Territory, Australia. The length of P. diacanthus proved to have a strong positive effect on the abundance of parasite taxa and overall parasitic assemblage of the sciaenid host. This finding introduces potential implications for parasitism in the future as fish body size responds to fishing pressure and climate changes. Of the various environmental factors measured during the tropical seasons of northern Australia, water temperature and salinity changes were shown as potential causal factors for the variance in parasite presence and abundance, with changes most influential on external parasitic organisms. As environmental factors like ocean temperature and salinity directly affect parasite–host relationships, this study suggests that parasite assemblages and the ecological functions that they perform are likely to change considerably over the coming decades in response to climate change and its proceeding effects.
The quantification of the relative mineralogical composition of clay mixtures by powder X-ray diffraction or chemical mass balance methods has been severely hampered by a lack of representative standards. The recent development of elemental mass balance models that do not require standards for all minerals in the mixture may help circumvent this problem. These methods, which are based on the numerical optimization of systems of non-linear equations using the Marquardt algorithm, show promise for mineral quantification. The objective of this study is to make a preliminary assessment of the accuracy of these methods and to compare them to linear models that require standards for all mineral phases. Methods 1 and 2 are based on weighted average solutions to simultaneous linear equations solved for single samples with known standards. Solutions were achieved by a matrix decomposition algorithm and the Marquardt algorithm, respectively. Methods 3 and 4 are based on a set of simultaneous non-linear equations with reduced non-linearity solved by least squares optimization based on the Marquardt algorithm for multiple samples. Illite and halloysite compositions were fixed in Method 3, only the halloysite composition was fixed in Method 4. All models yielded relative weight fractions of the three mineral components; additionally, Methods 3 and 4 yielded compositions of smectite, and smectite and illite, respectively. Ten clay mixtures with varying proportions of the <0.2 μm size fraction of three different reference clays (Wyoming bentonite, Fithian illite, and New Bedford halloysite) were prepared gravi-metrically and analyzed by inductively coupled plasma-atomic emission spectroscopy. Accuracy of the four methods was evaluated by comparing the known mineralogical compositions of the mixtures with those predicted by the models. Relative errors of 5 and 10% (randomly +/-) were imposed on the elemental composition of the smectite standard to simulate errors due to lack of good standards. Not surprisingly, the accuracy of Methods 1 and 2 decreased rapidly with increasing error. Because Methods 3 and 4 optimized for the smectite composition and only used it for an initial guess, they were unaffected by the level of introduced error. They accurately quantified the mineralogical compositions of the mixtures and the elemental compositions of smectite, and smectite and illite, respectively.
Understanding historical environmental determinants associated with the risk of elevated marine water contamination could enhance monitoring marine beaches in a Canadian setting, which can also inform predictive marine water quality models and ongoing climate change preparedness efforts. This study aimed to assess the combination of environmental factors that best predicts Escherichia coli (E. coli) concentration at public beaches in Metro Vancouver, British Columbia, by combining the region’s microbial water quality data and publicly available environmental data from 2013 to 2021. We developed a Bayesian log-normal mixed-effects regression model to evaluate predictors of geometric E. coli concentrations at 15 beaches in the Metro Vancouver Region. We identified that higher levels of geometric mean E. coli levels were predicted by higher previous sample day E. coli concentrations, higher rainfall in the preceding 48 h, and higher 24-h average air temperature at the median or higher levels of the 24-h mean ultraviolet (UV) index. In contrast, higher levels of mean salinity were predicted to result in lower levels of E. coli. Finally, we determined that the average effects of the predictors varied highly by beach. Our findings could form the basis for building real-time predictive marine water quality models to enable more timely beach management decision-making.
Smartphones have the potential for capturing subtle changes in cognition that characterize preclinical Alzheimer’s disease (AD) in older adults. The Ambulatory Research in Cognition (ARC) smartphone application is based on principles from ecological momentary assessment (EMA) and administers brief tests of associative memory, processing speed, and working memory up to 4 times per day over 7 consecutive days. ARC was designed to be administered unsupervised using participants’ personal devices in their everyday environments.
Methods:
We evaluated the reliability and validity of ARC in a sample of 268 cognitively normal older adults (ages 65–97 years) and 22 individuals with very mild dementia (ages 61–88 years). Participants completed at least one 7-day cycle of ARC testing and conventional cognitive assessments; most also completed cerebrospinal fluid, amyloid and tau positron emission tomography, and structural magnetic resonance imaging studies.
Results:
First, ARC tasks were reliable as between-person reliability across the 7-day cycle and test-retest reliabilities at 6-month and 1-year follow-ups all exceeded 0.85. Second, ARC demonstrated construct validity as evidenced by correlations with conventional cognitive measures (r = 0.53 between composite scores). Third, ARC measures correlated with AD biomarker burden at baseline to a similar degree as conventional cognitive measures. Finally, the intensive 7-day cycle indicated that ARC was feasible (86.50% approached chose to enroll), well tolerated (80.42% adherence, 4.83% dropout), and was rated favorably by older adult participants.
Conclusions:
Overall, the results suggest that ARC is reliable and valid and represents a feasible tool for assessing cognitive changes associated with the earliest stages of AD.
Tourniquets are the standard of care for civilian and military prehospital treatment of massive extremity hemorrhages. Over the past 17 years, multiple military studies have demonstrated rare complications related to tourniquet usage. These studies may not translate well to civilian populations due to differences in baseline health. Experimental studies have demonstrated increased rates of post-traumatic acute kidney injuries (AKIs) in rats with obesity and increased oxidative stress, suggesting that comorbidities may affect AKI incidence with tourniquet usage. Two recently published retrospective studies, focused on the safety of tourniquets deployed within civilian sectors, documented increased incidence of AKI in patients with a prehospital tourniquet as compared to previously published military results. This study aimed to provide descriptive data concerning the association between the use of prehospital tourniquets and AKIs amongst civilian patient populations as AKIs increase mortality in hospitalized patients.
Methods:
This was a single-center, observational, cross-sectional, pilot study involving chart review of participants presenting to a tertiary Level 1 trauma center. Patient data were extracted from prehospital and hospital electronic medical records. For this study, AKI was defined using the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines.
Results:
A total of 255 participants were included. Participants with a history of diabetes mellitus had a significantly higher incidence of AKI as compared to those without. Analysis revealed an increased odds of AKI with diabetes in association to the use of a prehospital tourniquet. Participants with diabetes had an increased relative risk of AKI in association to the use of a prehospital tourniquet. The incidence of AKI was statistically higher than what was previous reported in the military population in association with the use of a prehospital tourniquet.
Conclusion:
The incidence of AKIs was higher than previously reported. Patients with diabetes had an associated higher risk and incidence of sustaining an AKI after the use of a prehospital tourniquet in association with the use of a prehospital tourniquet. This may be due to the known deleterious effects of diabetes mellitus on renal function. This study provides clinically relevant data that warrant further multi-site investigations to further investigate this study’s associated findings and potential causation. It also stresses the need to assess whether renally-impacting environmental and nutritional stressors affect AKI rates amongst military personnel and others in which prehospital tourniquets are used.
During the first decade and a half of the development of the systems ecology paradigm (SEP) most research efforts were placed on learning about how the biophysical realms of ecosystems function and how simulation models could aid gaining that understanding. Missing from that research were the obvious connections of humans as components of ecosystems, not simply as controllers. In 1981 the US National Science Foundation (NSF) Programs Ecosystems Studies and Anthropology funded the South Turkana Ecosystem Project. It was the first time that an ecosystem study had included the human component as a full actor in an ecosystem. The NSF has since created the Dynamics of Coupled Natural and Human Systems program, the sole purpose of which is to fund these types of projects. The human side of SEP has grown in other directions as well including, agro-ecosystem ecology, understanding ecosystem services and effects of land fragmentation, Citizen Science, and providing guidance to the management of natural and human-dominated systems and the improvement of human welfare. Ongoing research has led to the realization that the human residents of the ecosystems under study can engage with research scientists to co-create knowledge about the operation of their own systems.
Ecosystem modeling, a pillar of the systems ecology paradigm (SEP), addresses questions such as, how much carbon and nitrogen are cycled within ecological sites, landscapes, or indeed the earth system? Or how are human activities modifying these flows? Modeling, when coupled with field and laboratory studies, represents the essence of the SEP in that they embody accumulated knowledge and generate hypotheses to test understanding of ecosystem processes and behavior. Initially, ecosystem models were primarily used to improve our understanding about how biophysical aspects of ecosystems operate. However, current ecosystem models are widely used to make accurate predictions about how large-scale phenomena such as climate change and management practices impact ecosystem dynamics and assess potential effects of these changes on economic activity and policy making. In sum, ecosystem models embedded in the SEP remain our best mechanism to integrate diverse types of knowledge regarding how the earth system functions and to make quantitative predictions that can be confronted with observations of reality. Modeling efforts discussed are the Century ecosystem model, DayCent ecosystem model, Grassland Ecosystem Model ELM, food web models, Savanna model, agent-based and coupled systems modeling, and Bayesian modeling.
Despite the substantial investment by Australian health authorities to improve the health of rural and remote communities, rural residents continue to experience health care access challenges and poorer health outcomes. Health literacy and community engagement are both considered critical in addressing these health inequities. However, the current focus on health literacy can place undue burdens of responsibility for healthcare on individuals from disadvantaged communities whilst not taking due account of broader community needs and healthcare expectations. This can also marginalize the influence of community solidarity and mobilization in effecting healthcare improvements.
Objective:
The objective is to present a conceptual framework that describes community literacy, its alignment with health literacy, and its relationship to concepts of community engaged healthcare.
Findings:
Community literacy aims to integrate community knowledge, skills and resources into the design, delivery and adaptation of healthcare policies, and services at regional and local levels, with the provision of primary, secondary, and tertiary healthcare that aligns to individual community contexts. A set of principles is proposed to support the development of community literacy. Three levels of community literacy education for health personnel have been described that align with those applied to health literacy for consumers. It is proposed that community literacy education can facilitate transformational community engagement. Skills acquired by health personnel from senior executives to frontline clinical staff, can also lead to enhanced opportunities to promote health literacy for individuals.
Conclusions:
The integration of health and community literacy provides a holistic framework that has the potential to effectively respond to the diversity of rural and remote Australian communities and their healthcare needs and expectations. Further research is required to develop, validate, and evaluate the three levels of community literacy education and alignment to health policy, prior to promoting its uptake more widely.
We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over 34 petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available 18 months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio astronomy software packages. In order to populate the database with calibration solutions from the last 6 yr we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database, we present an analysis of the stability of the MWA calibration solutions over long time intervals.
We demonstrate an application evaluating carbon sequestration benefits from federal policy alternatives. Using detailed forest inventory data, we projected carbon sequestration outcomes in the coterminous 48 states for a baseline scenario and three policy scenarios through 2050. Alternatives included (1) reducing deforestation from development, (2) afforestation in the eastern United States and reforestation in the western United States, and (3) reducing stand-replacing wildfires. We used social cost of carbon estimates to evaluate the present value of carbon sequestration benefits gained with each policy. Results suggest that afforestation and reforestation would provide the greatest marginal increase in carbon benefit, far exceeding policy cost.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
The hard-core model has attracted much attention across several disciplines, representing lattice gases in statistical physics and independent sets in discrete mathematics and computer science. On finite graphs, we are given a parameter λ, and an independent set I arises with probability proportional to λ|I|. On infinite graphs a Gibbs measure is defined as a suitable limit with the correct conditional probabilities, and we are interested in determining when this limit is unique and when there is phase coexistence, i.e., existence of multiple Gibbs measures.
It has long been conjectured that on ℤ2 this model has a critical value λc ≈ 3.796 with the property that if λ < λc then it exhibits uniqueness of phase, while if λ > λc then there is phase coexistence. Much of the work to date on this problem has focused on the regime of uniqueness, with the state of the art being recent work of Sinclair, Srivastava, Štefankovič and Yin showing that there is a unique Gibbs measure for all λ < 2.538. Here we explore the other direction and prove that there are multiple Gibbs measures for all λ > 5.3506. We also show that with the methods we are using we cannot hope to replace 5.3506 with anything below 4.8771.
Our proof begins along the lines of the standard Peierls argument, but we add two innovations. First, following ideas of Kotecký and Randall, we construct an event that distinguishes two boundary conditions and always has long contours associated with it, obviating the need to accurately enumerate short contours. Second, we obtain improved bounds on the number of contours by relating them to a new class of self-avoiding walks on an oriented version of ℤ2.
In September 2016, the annual meeting of the International Union for Quaternary Research’s Loess and Pedostratigraphy Focus Group, traditionally referred to as a LoessFest, met in Eau Claire, Wisconsin, USA. The 2016 LoessFest focused on “thin” loess deposits and loess transportation surfaces. This LoessFest included 75 registered participants from 10 countries. Almost half of the participants were from outside the United States, and 18 of the participants were students. This review is the introduction to the special issue for Quaternary Research that originated from presentations and discussions at the 2016 LoessFest. This introduction highlights current understanding and ongoing work on loess in various regions of the world and provides brief summaries of some of the current approaches/strategies used to study loess deposits.
Our primary goal was to decrease time to resolution of postoperative chylothorax as demonstrated by total days of chest tube utilisation through development and implementation of a management protocol.
Methods
A chylothorax management protocol was implemented as a quality improvement project at a tertiary-care paediatric hospital in July, 2015. Retrospective analysis was completed on patients aged 0–17 years diagnosed with chylothorax within 30 days of cardiac surgery in a pre-protocol cohort (February, 2014 to June, 2015, n=20) and a post-protocol cohort (July, 2015 to March, 2016, n=22).
Measurements and results
Patient characteristics were similar before and after protocol implementation. Duration of mechanical ventilation and cardiac ICU and hospital lengths of stay were unchanged between cohorts. Following protocol implementation, total duration of chest tube utilisation decreased from 12 to 7 days (p=0.047) with a decrease in maximum days of chest tube utilisation from 44 to 13 days. Duration of medium-chain triglyceride feeds decreased from 42 days to 31 days (p=0.01). In total, three patients in the post-protocol cohort underwent additional surgical procedures to treat chylothorax with subsequent resolution of chylothorax within 24 hours. There were no chest tube re-insertions or re-admissions related to chylothorax in either the pre- or post-protocol cohorts. Protocol compliance was 81%.
Conclusions
Adoption of a chylothorax management protocol is feasible, and in our small cohort of patients implementation led to a significant decrease in the duration of chest tube utilisation, while eliminating practice variability among providers.
The Patient Reported Outcomes Burdens and Experiences (PROBE) questionnaire was developed with direct patient involvement in questionnaire design, conduct and analysis using patient-centered outcomes to assess health status in patients with hemophilia (PWH). Phase 1 confirmed robustness of the methodology and feasibility. Phase 2a investigated individual test-retest reliability. Phase 2b will explore population level reproducibility.
METHODS:
PWH and non-PWH individuals who attended a hemophilia-related workshop were asked to complete the PROBE questionnaire 3 times (paper-based survey on 2 consecutive days and then a web-based version). Test-retest reliability was analyzed using the percentage agreement and Kappa statistic. Kappa coefficient interpretation .81-1.00 almost perfect, .61- .80 substantial; .41- .60 moderate; .21 -.40 fair; .00 -.20, slight; and < .00 poor agreement.
RESULTS:
Sixty-three participants from twenty-one countries were enrolled with a median age of 50 (range 14–76) years. Of these, thirty (47.6 percent) were PWH or carriers, thirty-three (52.5 percent) were participants with no known bleeding disorders. On general health domain, Kappa coefficients ranged from .69 to .92, indicating substantial to almost perfect agreement, for all items. Reliability of the web-based questionnaire showed moderate to substantial agreement for all except one item. For the hemophilia-related domain, Kappa coefficients ranged from .5-1.0. Of these, five of eleven items were in perfect agreement (Kappa = 1.0). Reliability of web-based questionnaire items were in substantial to almost perfect agreement. For overall health related quality of life, the EuroQol five dimensions questionnaire (EQ-5D) had Kappa coefficients of .62 to .92. Intraclass correlation coefficient of visual analog scale (VAS) was .90 (95 percent Confidence Interval, CI; .83-.94). Test-retest reliability was comparable between hemophilia patients and participants with no known bleed.
CONCLUSIONS:
Phase 2a demonstrated individual test-retest reliability and suggests PROBE is a reliable tool to assess Patient Reported Outcomes in PWH. The Web-based questionnaire has an acceptable agreement with the standard paper-based version in all domains. PROBE Phase 2b, to demonstrate reproducibility at the population level, is on-going. To date, 1,039 participants have been recruited from 10 countries.
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array’s receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Imazethapyr dose response curves were developed under laboratory and field conditions with the imazethapyr-resistant and -susceptible corn hybrids Pioneer 3180IR, IR denoting a hybrid homozygous for the XA17 gene conferring resistance to imazethapyr, and normal Pioneer 3180, respectively, and their F1 progeny to establish methods of measuring the presence of the XA17 gene and quantifying its impact. At two field locations, absorption of photosynthetically active radiation was a sensitive index of corn injury caused by imazethapyr. Imazethapyr, at 35 g/ha (one half the labeled rate), reduced absorption of photosynthetically active radiation in Pioneer 3180 by 8.3% at 1 wk after treatment. Plant height also was a sensitive index of injury. The minimum rate at which imazethapyr injury was detected in the Pioneer 3180IR/Pioneer 3180 F1 hybrid differed with location. Pioneer 3180IR was not injured by 280 g/ha of imazethapyr. The Pioneer 3180IR/3180 F1 hybrid was injured slightly by imazethapyr at 140 g/ha, but recovered within 5 wk after treatment, and grain yield was not reduced by 280 g/ha of imazethapyr. A seedling assay reliably detected differences between progeny of Pioneer 3180IR and Pioneer 3180IR/3180 F1.
Velvetleaf (Abutilon theophrasti Medic. ♯3 ABUTH) grown under monoculture consistently exceeded velvetleaf intercropped with soybeans [Glycine max (L.) Merr. var. ‘Amsoy 71′] in leaf area, nodes with fully developed leaves, canopy width, branches, and number of capsules as early as 3, 3, 4, 5, and 8 weeks, respectively, after simultaneous emergence. Velvetleaf plants without soybean competition eventually developed over nine times the dry matter of velvetleaf intercropped with soybean. The only components of velvetleaf plants sampled which sometimes increased significantly when soybean was defoliated in a manner simulating damage caused by the green cloverworm (GCW) (Plathypena scabra F.) were leaf area, number of leaves, and number of main-stem nodes. Soybeans in Iowa are attacked by the GCW late enough in the growing season that velvetleaf surviving previous weed management efforts benefited only slightly.
Destructive growth analysis of field replacement series experiments with mayweed chamomile and dry field peas was used to determine the competitive relationship between the two species. Mayweed chamomile produced similar amounts of leaf area and dry weight per plant in a dry year and a wet year. On the other hand, dry field peas produced 20% more leaf area and 100% more dry weight per plant in the wet year compared to the dry year. Height, leaf area, and dry weight of peas reached maximum between bloom and pod-set, and then declined. Height and dry weight of mayweed chamomile increased steadily throughout the growing season. Mayweed chamomile leaf area reached a maximum at the beginning of flower stem elongation. Initially, the relative growth rate of mayweed chamomile was about three times greater than the rate for peas, but by 40 to 48 d after planting, rates were similar for both species. Relative yields and relative crowding coefficients for dry weight showed that peas were 3 to 20 times more aggressive than mayweed chamomile. Results of these experiments show that mayweed chamomile is a weak competitor against peas, but because it continues to grow after peas senesce, it could interfere with crop harvest.