The dynamics of evolving fluid films in the viscous Stokes limit is relevant to various applications, such as the modelling of lipid bilayers in cells. While the governing equations were formulated by Scriven (1960), solving for the flow of a deformable viscous surface with arbitrary shape and topology has remained a challenge. In this study, we present a straightforward discrete model based on variational principles to address this long-standing problem. We replace the classical equations, which are expressed with tensor calculus in local coordinates, with a simple coordinate-free, differential-geometric formulation. The formulation provides a fundamental understanding of the underlying mechanics and translates directly to discretization. We construct a discrete analogue of the system using Onsager's variational principle, which, in a smooth context, governs the flow of a viscous medium. In the discrete setting, instead of term-wise discretizing the coordinate-based Stokes equations, we construct a discrete Rayleighian for the system and derive the discrete Stokes equations via the variational principle. This approach results in a stable, structure-preserving variational integrator that solves the system on general manifolds.