We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The longitudinal course of late-life depression remains under-studied.
Aims
To describe transitions along the depression continuum in old age and to identify factors associated with specific transition patterns.
Method
We analysed 15-year longitudinal data on 2745 dementia-free persons aged 60+ from the population-based Swedish National Study on Aging and Care in Kungsholmen. Depression (minor and major) was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; subsyndromal depression (SSD) was operationalised as the presence of ≥2 symptoms without depression. Multistate survival models were used to map depression transitions, including death, and to examine the association of psychosocial (social network, connection and support), lifestyle (smoking, alcohol consumption and physical activity) and clinical (somatic disease count) factors with transition patterns.
Results
Over the follow-up, 19.1% had ≥1 transitions across depressive states, while 6.5% had ≥2. Each additional somatic disease was associated with a higher hazard of progression from no depression (No Dep) to SSD (hazard ratio 1.09; 1.07–1.10) and depression (Dep) (hazard ratio 1.06; 1.04–1.08), but also with a lower recovery (HRSSD−No Dep 0.95; 0.93–0.97 [where ‘HR’ refers to ‘hazard ratio’]; HRDep−No Dep 0.96; 0.93–0.99). Physical activity was associated with an increased hazard of recovery to no depression from SSD (hazard ratio 1.49; 1.28–1.73) and depression (hazard ratio 1.20; 1.00–1.44), while a richer social network was associated with both higher recovery from (HRSSD−No Dep 1.44; 1.26–1.66; HRDep−No Dep 1.51; 1.34–1.71) and lower progression hazards to a worse depressive state (HRNo Dep−SSD 0.81; 0.70–0.94; HRNo Dep−Dep 0.58; 0.46–0.73; HRSSD−Dep 0.66; 0.44–0.98).
Conclusions
Older people may present with heterogeneous depressive trajectories. Targeting the accumulation of somatic diseases and enhancing social interactions may be appropriate for both depression prevention and burden reduction, while promoting physical activity may primarily benefit recovery from depressive disorders.
Co-occurring somatic diseases exhibit complex clinical profiles, which can differentially impact the development of late-life depression. Within a community-based cohort, we aimed to explore the association between somatic disease burden, both in terms of the number of diseases and their patterns, and the incidence of depression in older people.
Methods
We analysed longitudinal data of depression- and dementia-free individuals aged 60+ years from the population-based Swedish National Study on Aging and Care in Kungsholmen. Depression diagnoses were clinically ascertained following the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision over a 15-year follow-up. Somatic disease burden was assessed at baseline through a comprehensive list of chronic diseases obtained by combining information from clinical examinations, medication reviews and national registers and operationalized as (i) disease count and (ii) patterns of co-occurring diseases from latent class analysis. The association of somatic disease burden with depression incidence was investigated using Cox models, accounting for sociodemographic, lifestyle and clinical factors.
Results
The analytical sample comprised 2904 people (mean age, 73.2 [standard deviation (SD), 10.5]; female, 63.1%). Over the follow-up (mean length, 9.6 years [SD, 4 years]), 225 depression cases were detected. Each additional disease was associated with the occurrence of any depression in a dose–response manner (hazard ratio [HR], 1.16; 95% confidence interval [CI]: 1.08, 1.24). As for disease patterns, individuals presenting with sensory/anaemia (HR, 1.91; 95% CI: 1.03, 3.53), thyroid/musculoskeletal (HR, 1.90; 95% CI: 1.06, 3.39) and cardiometabolic (HR, 2.77; 95% CI: 1.40, 5.46) patterns exhibited with higher depression hazards, compared to those without 2+ diseases (multimorbidity). In the subsample of multimorbid individuals (85%), only the cardiometabolic pattern remained associated with a higher depression hazard compared to the unspecific pattern (HR, 1.71; 95% CI: 1.02, 2.84).
Conclusions
Both number and patterns of co-occurring somatic diseases are associated with an increased risk of late-life depression. Mental health should be closely monitored among older adults with high somatic burden, especially if affected by cardiometabolic multimorbidity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.