We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
In 2019, Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23(2) (2019), 249–254] introduced the arithmetic function $\sigma \textrm {mex}(n)$, which denotes the sum of minimal excludants over all the partitions of n. Baruah et al. [‘A refinement of a result of Andrews and Newman on the sum of minimal excludants’, Ramanujan J., to appear] showed that the sum of minimal excludants over all the partitions of n is the same as the number of partition pairs of n into distinct parts. They proved three congruences modulo $4$ and $8$ for two functions appearing in this refinement and conjectured two further congruences modulo $8$ and $16$. We confirm these two conjectures by using q-series manipulations and modular forms.
Let $Q(n)$ denote the number of partitions of n into distinct parts. Merca [‘Ramanujan-type congruences modulo 4 for partitions into distinct parts’, An. Şt. Univ. Ovidius Constanţa30(3) (2022), 185–199] derived some congruences modulo $4$ and $8$ for $Q(n)$ and posed a conjecture on congruences modulo powers of $2$ enjoyed by $Q(n)$. We present an approach which can be used to prove a family of internal congruence relations modulo powers of $2$ concerning $Q(n)$. As an immediate consequence, we not only prove Merca’s conjecture, but also derive many internal congruences modulo powers of $2$ satisfied by $Q(n)$. Moreover, we establish an infinite family of congruence relations modulo $4$ for $Q(n)$.
Recently, when studying intricate connections between Ramanujan’s theta functions and a class of partition functions, Banerjee and Dastidar [‘Ramanujan’s theta functions and parity of parts and cranks of partitions’, Ann. Comb., to appear] studied some arithmetic properties for $c_o(n)$, the number of partitions of n with odd crank. They conjectured a congruence modulo $4$ satisfied by $c_o(n)$. We confirm the conjecture and evaluate $c_o(4n)$ modulo $8$ by dissecting some q-series into even powers. Moreover, we give a conjecture on the density of divisibility of odd cranks modulo 4, 8 and 16.
We construct eta-quotient representations of two families of q-series involving the Rogers–Ramanujan continued fraction by establishing related recurrence relations. We also display how these eta-quotient representations can be utilised to dissect certain q-series identities.
Following recent investigations of vanishing coefficients in infinite products, we show that such instances are very rare when the infinite product is among a family of theta-quotients of modulus five. We also prove that a general family of products of theta functions of modulus five can always be effectively 5-dissected.
Motivated by Ramanujan’s continued fraction and the work of Richmond and Szekeres [‘The Taylor coefficients of certain infinite products’, Acta Sci. Math. (Szeged)40(3–4) (1978), 347–369], we investigate vanishing coefficients along arithmetic progressions in four quotients of infinite product expansions and obtain similar results. For example, $a_{1}(5n+4)=0$, where $a_{1}(n)$ is defined by