We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the performance of a comorbidity-based risk-adjustment model for surgical-site infection (SSI) reporting and benchmarking using a panel of variables extracted from the hospital discharge database (HDD), including comorbidities, compared to other models that use variables from different data sources.
Methods:
The French national surveillance program for SSI (SPICMI) has collected data from voluntary hospitals in the first 6 months of 2020 and 2021, for 16 selected surgery procedures, using a semiautomated algorithm for detection. Four risk-adjustment models were selected with logistic regression analysis, combining the different patterns of variables: National Nosocomial Infections Surveillance System (NNIS) risk-index components, individual operative data, and 6 individual comorbidities according to International Classification of Disease, Tenth Revision (ICD-10) diagnosis: obesity, diabetes, malnutrition, hypertension, cancer, or immunosuppression. Areas under the curve (AUCs) were calculated and compared.
Results:
Overall, 294 SSI were detected among 11,975 procedures included. All 6 comorbidities were related to SSI in the univariate analysis. The AUC of the selected model including comorbidities (0.675; 95% confidence interval [CI], 0.642–0.707), was significantly higher than the AUC of the model without comorbidities (0.641; 95% CI, 0.609–0.672; P = .016) or the AUC using the NNIS-index components (0.598; 95% CI, 0.564–0.630; P < .001). The HDD-based model AUC (0.659; 95% CI, 0.625–0.692) did not differ significantly from the selected model without comorbidities (P = .23).
Conclusion:
Including HDD-based comorbidities as patient case-mix variables instead of NNIS risk index factors could be an effective approach for risk-adjustment of automated SSI surveillance more widely accessible to hospitals.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.