We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Annex III is intended to become a ‘living document’, which will be updated in the light of new information in order to serve as an input to the IPCC Fifth Assessment Report (AR5). Scientists that are interested in supporting this process are invited to contact the IPCC WG III Technical Support Unit (TSU) (using srren_cost@ipcc-wg3.de) in order to get further information concerning the submission process. Comments and new data input will be considered for inclusion in Volume 3 of the IPCC AR5 according to the procedures of the IPCC review system.
This Annex contains recent cost and performance parameter information for currently commercially available renewable power generation technologies (Table A.III.1), heating technologies (Table A.III.2) and bio-fuel production processes (Table A.III.3). It summarizes information that determines the levelized cost of energy or energy carriers supplied by the respective technologies.
The input ranges are based on assessments of various studies by authors of the respective technology chapters (Chapters 2 through 7). If not stated otherwise, the data ranges provided here are worldwide aggregates. Data are generally for 2008, but can be as recent as 2009. They represent roughly the mid-80% of values found in the literature, hence, excluding outliers. The availability and quality of different sources of data varies significantly across individual technologies for a variety of reasons. Some expert judgment is therefore required to determine data ranges that are representative of particular classes of technologies and specific periods of time and valid globally.
Solar energy is abundant and offers significant potential for near-term (2020) and long-term (2050) climate change mitigation. There are a wide variety of solar technologies of varying maturities that can, in most regions of the world, contribute to a suite of energy services. Even though solar energy generation still only represents a small fraction of total energy consumption, markets for solar technologies are growing rapidly. Much of the desirability of solar technology is its inherently smaller environmental burden and the opportunity it offers for positive social impacts. The cost of solar technologies has been reduced significantly over the past 30 years and technical advances and supportive public policies continue to offer the potential for additional cost reductions. Potential deployment scenarios range widely—from a marginal role of direct solar energy in 2050 to one of the major sources of energy supply. The actual deployment achieved will depend on the degree of continued innovation, cost reductions and supportive public policies.
Solar energy is the most abundant of all energy resources. Indeed, the rate at which solar energy is intercepted by the Earth is about 10,000 times greater than the rate at which humankind consumes energy. Although not all countries are equally endowed with solar energy, a significant contribution to the energy mix from direct solar energy is possible for almost every country. Currently, there is no evidence indicating a substantial impact of climate change on regional solar resources.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.