We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The logic behind sleep deprivation studies is basically sound. The first problem is that sleep is a process that not only occurs in the brain, but is also a process that undoubtedly confers unique benefits to the brain itself. In the parlance familiar to those who are afflicted with a degree in experimental psychology and have thus been subjected to a course in "The Philosophy of Science", the scientific paradigm under which sleep deprivation research is conducted contains some conceptual gaps. The difficulty is as follows: extended continuous wakefulness is an antecedent condition that leads to a predictable, observable outcome: decremented performance. Results from studies conducted to determine the effects of sleep loss on various neurocognitive abilities have proven useful for informing policy, and decision-making in a variety of operational and regulatory environments, and the utilitarian value of such studies for testing work/rest schedules and drug effects remains high.
This chapter presents the methodology, normative data, results from clinical populations and problems associated with the objective measures of sleepiness. The multiple sleep latency test (MSLT) is used in the diagnosis of narcolepsy and the hypersomnias. The maintenance of wakefulness test (MWT) has been used by the FAA and state departments of transportation as a means of screening pilots and commercial drivers for ability to maintain alertness in sedentary work settings. Less research supports the Oxford Sleepiness Resistance (OSLER) and pupillography tests, but the OSLER, which attempts to measure sleep onset without traditional measurement of either performance or EEG, holds promise as a simpler but still time-consuming measure. The tests measure more than a single sleep system and almost certainly reflect the summation of numerous sources of state and trait arousal in addition to the effects of circadian time, prior wakefulness and numerous underlying sleep and arousal pathologies.