We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Exclusion of special populations (older adults; pregnant women, children, and adolescents; individuals of lower socioeconomic status and/or who live in rural communities; people from racial and ethnic minority groups; individuals from sexual or gender minority groups; and individuals with disabilities) in research is a pervasive problem, despite efforts and policy changes by the National Institutes of Health and other organizations. These populations are adversely impacted by social determinants of health (SDOH) that reduce access and ability to participate in biomedical research. In March 2020, the Northwestern University Clinical and Translational Sciences Institute hosted the “Lifespan and Life Course Research: integrating strategies” “Un-Meeting” to discuss barriers and solutions to underrepresentation of special populations in biomedical research. The COVID-19 pandemic highlighted how exclusion of representative populations in research can increase health inequities. We applied findings of this meeting to perform a literature review of barriers and solutions to recruitment and retention of representative populations in research and to discuss how findings are important to research conducted during the ongoing COVID-19 pandemic. We highlight the role of SDOH, review barriers and solutions to underrepresentation, and discuss the importance of a structural competency framework to improve research participation and retention among special populations.
Electronic platforms provide an opportunity to improve the informed consent (IC) process by permitting elements shown to increase research participant understanding and satisfaction, such as graphics, self-pacing, meaningful engagement, and access to additional information on demand. However, including these elements can pose operational and regulatory challenges for study teams and institutional review boards (IRBs) responsible for the ethical conduct and oversight of research. We examined the experience of two study teams at Alzheimer’s Disease Research Centers who chose to move from a paper-based IC process to an electronic informed consent (eIC) process to highlight some of these complexities and explore how IRBs and study teams can navigate them. Here, we identify the key regulations that should be considered when developing and using an eIC process as well as some of the operational considerations eIC presents related to IRB review and how they can be addressed.
The aim of this study was to examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer’s disease (AD). Sixty-nine enrollees in the Wisconsin Registry for Alzheimer’s Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. There were significant VO2peak*PiB-PET interactions for Immediate Memory (p=.041) and Verbal Learning & Memory (p=.025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p<.001). Specifically, in the context of high Aβ burden, that is, increased PiB-PET binding or reduced CSF Aβ42, individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD. (JINS, 2015, 21, 841–850)
Email your librarian or administrator to recommend adding this to your organisation's collection.