We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Converting knowledge from basic research into innovations that improve clinical care requires a specialized workforce that converts a laboratory invention into a product that can be developed and tested for clinical use. As the mandate to demonstrate more real-world impact from the national investment in research continues to grow, the demand for staff that specialize in product development and clinical trials continues to outpace supply. In this study, two academic medical institutions in the greater Houston–Galveston region termed this population the “bridge and clinical research professional” (B + CRP) workforce and assessed its turnover before and after the onset of the COVID-19 pandemic . Both institutions realized growth (1.2 vs 2.3-fold increase) in B + CRP-specific jobs from 2017 to 2022. Turnover increased 1.5–2-fold after the onset of the pandemic but unlike turnover in the larger clinical and translational research academic workforce, the instability did not resolve by 2022. These results are a baseline measurement of the instability of our regional B + CRP workforce and have informed the development of a regional alliance of universities, academic medical centers, and economic development organizations in the greater Houston–Galveston region to increase this highly specialized and skilled candidate pool.
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent psychiatric condition that frequently originates in early development and is associated with a variety of functional impairments. Despite a large functional neuroimaging literature on ADHD, our understanding of the neural basis of this disorder remains limited, and existing primary studies on the topic include somewhat divergent results.
Objectives
The present meta-analysis aims to advance our understanding of the neural basis of ADHD by identifying the most statistically robust patterns of abnormal neural activation throughout the whole-brain in individuals diagnosed with ADHD compared to age-matched healthy controls.
Methods
We conducted a meta-analysis of task-based functional magnetic resonance imaging (fMRI) activation studies of ADHD. This included, according to PRISMA guidelines, a comprehensive PubMed search and predetermined inclusion criteria as well as two independent coding teams who evaluated studies and included all task-based, whole-brain, fMRI activation studies that compared participants diagnosed with ADHD to age-matched healthy controls. We then performed multilevel kernel density analysis (MKDA) a well-established, whole-brain, voxelwise approach that quantitatively combines existing primary fMRI studies, with ensemble thresholding (p<0.05-0.0001) and multiple comparisons correction.
Results
Participants diagnosed with ADHD (N=1,550), relative to age-matched healthy controls (N=1,340), exhibited statistically significant (p<0.05-0.0001; FWE-corrected) patterns of abnormal activation in multiple brains of the cerebral cortex and basal ganglia across a variety of cognitive control tasks.
Conclusions
This study advances our understanding of the neural basis of ADHD and may aid in the development of new brain-based clinical interventions as well as diagnostic tools and treatment matching protocols for patients with ADHD. Future studies should also investigate the similarities and differences in neural signatures between ADHD and other highly comorbid psychiatric disorders.
In November 1995, the Laboratory of Archaeology at the University of Georgia submitted inventories and summaries of Indigenous ancestors and funerary objects in its holdings to comply with the passage of the Native American Graves Protection and Repatriation Act (NAGPRA). However, after this submission, the Laboratory attempts at consultation with federally recognized descendant Tribal communities who have cultural ties in the state of Georgia were not successful, and NAGPRA-related activities essentially stalled at the Laboratory. Beginning in 2019, the Laboratory's staff recognized a lack of formal NAGPRA policies or standards, which led to a complete reevaluation of the Laboratory's approach to NAGPRA. In essence, it was the Laboratory's renewed engagement with NAGPRA and descendan tribal communities that became the catalyst for change in the Laboratory's philosophy as a curation repository. This shift in thinking set the Laboratory on a path toward building a descendant community–informed institutional integrity (DCIII) level of engagement with consultation and collaborative efforts in all aspects of collections management and archaeological research. In this article, we outline steps that the Laboratory has taken toward implementing meaningful policies and practices created with descendant Tribal communities that both fulfill and extend bounds of NAGPRA compliance.
There is some evidence that rats benefit from social housing and from some forms of environmental enrichment, such as platforms and shelters. It is less clear whether they benefit from more spacious cages. There is a lack of information about the relative benefits of social contact, enrichment and increased space, because existing studies tend to concentrate on only one of these variables at a time. The current experiment used economic demand procedures as a method to compare, on a single scale, qualitatively different environments with a standard home cage. The data indicate that rats show a high demand for social contact, and a low demand for a larger cage or one containing pillars or novel objects. This finding suggests that social housing of laboratory rats should be strongly advocated.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Ecosystem modeling, a pillar of the systems ecology paradigm (SEP), addresses questions such as, how much carbon and nitrogen are cycled within ecological sites, landscapes, or indeed the earth system? Or how are human activities modifying these flows? Modeling, when coupled with field and laboratory studies, represents the essence of the SEP in that they embody accumulated knowledge and generate hypotheses to test understanding of ecosystem processes and behavior. Initially, ecosystem models were primarily used to improve our understanding about how biophysical aspects of ecosystems operate. However, current ecosystem models are widely used to make accurate predictions about how large-scale phenomena such as climate change and management practices impact ecosystem dynamics and assess potential effects of these changes on economic activity and policy making. In sum, ecosystem models embedded in the SEP remain our best mechanism to integrate diverse types of knowledge regarding how the earth system functions and to make quantitative predictions that can be confronted with observations of reality. Modeling efforts discussed are the Century ecosystem model, DayCent ecosystem model, Grassland Ecosystem Model ELM, food web models, Savanna model, agent-based and coupled systems modeling, and Bayesian modeling.
Section 1 of the FM14 focus on bridging the astronomy research and outreach communities - recent highlights, emerging collaborations, best practices and support structures. This paper also contains supplementary materials that point to contributed talks and poster presentations that can be found online.
Protaspides and later growth stages are described and discussed for the Ordovician trinucleid trilobite Cryptolithus tesselatus Green and the raphiophorid Lonchodomas chaziensis Shaw. A small triangular rostral plate is described for a single protaspid instar in both Cryptolithus and Lonchodomas. The presence of this small sclerite in the ontogeny of these taxa supports the origin of the Trinucleoidea from the Ptychopariida through reduction in and then fusion or loss of the rostral plate. Earlier and later growth stages have fused ventral sclerites, with no signs of connective sutures. All members of the Trinucleoidea with known ontogenies share similar small, ovoid asaphoid protaspides, with distinct axes and varying numbers of sharp, conical to subtubular, submarginal spines on the dorsal exoskeleton and marginal spines on the hypostome. Two protaspid instars are identified in both Cryptolithus and Lonchodomas, sharing many characters that indicate homologous levels of development. A single origin for the median suture of the Asaphida is supported, with an anterior rostellum as its precursor.
The Parkes radio telescope was commissioned in 1961, with an anticipated operational life of 15 years. Twentyfive years later the telescope has been refurbished with the aim of extending its life yet another decade or two. A major undertaking has been the complete replacement of the drive and control System. This presentation outlines the main features of the new System and its effect on the observing facilities offered at the observatory.
We present preliminary results from a number of deep radio polarization surveys being made of the Magellanic Clouds at 2.3 GHz, 4.75 GHz and 8.55 GHz. Extended and linearly polarized radio emission has been found at 2.3 and 4.75 GHz from both the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). However, as the analysis of these data is not yet complete we present only some of the 4.75 GHz results at this time.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion.
Up to four discrete protaspid larval stages are described for calymenid trilobites of Ordovician to Devonian age. The earliest growth stages are nonadult-like planktonic protaspides; later protaspides are adult-like and benthonic. In contrast, the related homalonotid trilobites apparently lack planktonic protaspides, but have up to two large benthonic protaspid stages that are similar in form to calymenid benthonic protaspides. These differences in life history patterns between these families are reflected in their paleobiogeographic distributions. Calymenids werre widely dispersed from Ordovician to Devonian times, both being common in warm, low latitude provinces (particularly from the Late Ordovician onwards) and well represented in cooler, higher latitude regions. The paleogeographic distribution of the homalonotids during the Ordovician (Arenig to the Ashgill) was concentrated in high paleolatitudes, with only a few forms occurring at low paleolatitudes (often in deeper, cooler environments?). Both families survived the Ordovician–Silurian mass extinction, with the calymenids again being widely dispersed but the homalonotids being best represented in the cool-water Malvinokaffric Province and in other regions where they are largely restricted to clastic facies.
So few complete growth series of calymenine trilobites are known that it is unlikely that the ontogenies of taxa that form parts of ancestor–descendant clades can be identified. However, some evidence for heterochronic, particularly paedomorphic (neotenic), evolution is suggested for larval stages of members of both the Calymenidae and the Homalonotidae. Such possible neotenic evolution leading to very large planktonic larval stages of calymenid trilobites during the Devonian could have enhanced dispersal during a period of widespread warm and equable climates. Comparisons of homalonotid protaspides with equivalent stages of calymenids support the close relationship of these families within the Calymenina. A data matrix based upon characters of protaspides of two calymenine trilobites (Flexicalymene Shirley, 1936, and Brongniartella Reed, 1918) and eight other trilobites, belonging to the Phacopina (Calyptaulax), Cheirurina (Physemataspis and Hyrokybe), Proetida (Scharyia), Lichida (Acanthopyge), Odontopleurida (Diacanthaspis), Corynexochida (Bathyuriscus), and Ptychopariida (Crassifimbra) was subjected to cladistic analysis using the parsimony program “Hennig 86.” The shortest length cladogram produced is consistent with the inclusion of the Homalonotidae in the Calymenina, and inclusion of the Calymenina in the order Phacopida. “Cheirurina” is the paraphyletic “stem group” of Phacopina. The hypothesis that Lonchocephalidae is most closely related to part of post-Cambrian Phacopida is poorly supported by protaspid characters.
People wounded during bombings or other events resulting in mass casualties or in conjunction with the resulting emergency response may be exposed to blood, body fluids, or tissue from other injured people and thus be at risk for bloodborne infections such as hepatitis B virus, hepatitis C virus, human immunodeficiency virus, or tetanus. This report adapts existing general recommendations on the use of immunization and postexposure prophylaxis for tetanus and for occupational and nonoccupational exposures to bloodborne pathogens to the specific situation of a mass casualty event. Decisions regarding the implementation of prophylaxis are complex, and drawing parallels from existing guidelines is difficult. For any prophylactic intervention to be implemented effectively, guidance must be simple, straightforward, and logistically undemanding. Critical review during development of this guidance was provided by representatives of the National Association of County and City Health Officials, the Council of State and Territorial Epidemiologists, and representatives of the acute injury care, trauma, and emergency response medical communities participating in the Centers for Disease Control and Prevention’s Terrorism Injuries: Information, Dissemination and Exchange project. The recommendations contained in this report represent the consensus of US federal public health officials and reflect the experience and input of public health officials at all levels of government and the acute injury response community. (Disaster Med Public Health Preparedness. 2008;2:150–165)
To report the design and baseline results of a rewards-based incentive to promote purchase of fruit and vegetables by lower-income households.
Design
A four-phase randomized trial with wait-listed controls. In a pilot study, despite inadequate study coupon use, purchases of fresh fruit (but not vegetables) increased, but with little maintenance. In the present study, credits on the study store gift card replace paper coupons and a tapering phase is added. The primary outcome is the number of servings of fresh and frozen fruit and vegetables purchased per week.
Setting
A large full-service supermarket located in a predominantly minority community in Philadelphia, Pennsylvania, USA.
Subjects
Fifty-eight households, with at least one child living in the home.
Results
During the baseline period, households purchased an average of 3·7 servings of fresh vegetables and an average of less than 1 serving of frozen vegetables per week. Households purchased an average of 1·9 servings of fresh fruit per week, with little to no frozen fruit purchases. Overall, the range of fresh and frozen produce purchased during this pre-intervention period was limited.
Conclusions
At baseline, produce purchases were small and of limited variety. The study will contribute to understanding the impact of financial incentives on increasing the purchases of healthier foods by lower-income populations.
The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with ρ+/ρ− ≪ 1 and u0+/u0− ≪ 1, then uI/u0− ~ 1 when Re (=u0−L−/ν−) ≫ 1 and R = (ρ−/ρ+)(v−/v+)1/2 ≫ 1. If the turbulence is driven in the upper layer with ρ+/ρ− ≪ 1 and u0+/u0− ≫ 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106–107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (ρ+/ρ−)1/2 ~ 1/30 for air–water interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs.