We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Duchenne muscular dystrophy is associated with progressive cardiorespiratory failure, including left ventricular dysfunction.
Methods and Results:
Males with probable or definite diagnosis of Duchenne muscular dystrophy, diagnosed between 1 January, 1982 and 31 December, 2011, were identified from the Muscular Dystrophy Surveillance Tracking and Research Network database. Two non-mutually exclusive groups were created: patients with ≥2 echocardiograms and non-invasive positive pressure ventilation-compliant patients with ≥1 recorded ejection fraction. Quantitative left ventricular dysfunction was defined as an ejection fraction <55%. Qualitative dysfunction was defined as mild, moderate, or severe. Progression of quantitative left ventricular dysfunction was modelled as a continuous time-varying outcome. Change in qualitative left ventricle function was assessed by the percentage of patients within each category at each age. Forty-one percent (n = 403) had ≥2 ejection fractions containing 998 qualitative assessments with a mean age at first echo of 10.8 ± 4.6 years, with an average first ejection fraction of 63.1 ± 12.6%. Mean age at first echo with an ejection fraction <55 was 15.2 ± 3.9 years. Thirty-five percent (140/403) were non-invasive positive pressure ventilation-compliant and had ejection fraction information. The estimated rate of decline in ejection fraction from first ejection fraction was 1.6% per year and initiation of non-invasive positive pressure ventilation did not change this rate.
Conclusions:
In our cohort, we observed that left ventricle function in patients with Duchenne muscular dystrophy declined over time, independent of non-invasive positive pressure ventilation use. Future studies are needed to examine the impact of respiratory support on cardiac function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.