We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous work showed that people find explanations more satisfying when they contain irrelevant neuroscience information. The current studies investigate why this effect happens. In Study 1 ( N=322), subjects judged psychology explanations that did or did not contain irrelevant neuroscience information. Longer explanations were judged more satisfying, as were explanations containing neuroscience information, but these two factors made independent contributions. In Study 2 ( N=255), subjects directly compared good and bad explanations. Subjects were generally successful at selecting the good explanation except when the bad explanation contained neuroscience and the good one did not. Study 3 ( N=159) tested whether neuroscience jargon was necessary for the effect, or whether it would obtain with any reference to the brain. Responses to these two conditions did not differ. These results confirm that neuroscience information exerts a seductive effect on people’s judgments, which may explain the appeal of neuroscience information within the public sphere.
What can research tell us about creativity in 3- to 5-year-old children? This chapter reviews the last 50 years of research to address this question. Several themes emerge. First, creativity has been notoriously difficult to define and measure, and is often studied in the context of children’s play and temperament. Second, the methods for studying creativity have been limited – largely relying on divergent-thinking measures. Third, there is interest in interventions that aim to foster creativity in young children. While the field has amassed a lot of data, strong studies are hard to find. Here, we boldly suggest that it is time to move beyond the traditional literature. Looking at more narrowly construed fields like curiosity, exploration, and innovation can offer a toehold into a better understanding of this broad field and holds the promise of helping researchers develop a more coherent model of how creativity plays out in the lives of young children.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.