We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study examines the individual and combined association of BMI and waist-to-hip ratio (WHR) with CVD risk using genetic scores of the obesity measurements as proxies.
Design:
A 2 × 2 factorial analysis approach was applied, with participants divided into four groups of lifetime exposure to low BMI and WHR, high BMI, high WHR, and high BMI and WHR based on weighted genetic risk scores. The difference in CVD risk across groups was evaluated using multivariable logistic regression.
Setting:
Cohort study.
Participants:
A total of 408 003 participants were included from the prospective observational UK Biobank study.
Results:
A total of 58 429 CVD events were recorded. Compared to the low BMI and WHR genetic scores group, higher BMI or higher WHR genetic scores were associated with an increase in CVD risk (high WHR: OR, 1·07; 95 % CI (1·04, 1·10)); high BMI: OR, 1·12; 95 % CI (1·09, 1·16). A weak additive effect on CVD risk was found between BMI and WHR (high BMI and WHR: OR, 1·16; 95 % CI (1·12, 1·19)). Subgroup analysis showed similar patterns between different sex, age (<65, ≥65 years old), smoking status, Townsend deprivation index, fasting glucose level and medication uses, but lower systolic blood pressure was associated with higher CVD risk in obese participants.
Conclusions:
High BMI and WHR were associated with increased CVD risk, and their effects are weakly additive. Even though there were overlapping of effect, both BMI and WHR are important in assessing the CVD risk in the general population.
The aim of this study was to explore the relationship between patient self-reported Patient Health Questionnaire-9 (PHQ-9) symptoms and doctor diagnosis of depression using a tree analysis approach.
Methods
This was a secondary analysis on a dataset obtained from 10 179 adult primary care patients and 59 primary care physicians (PCPs) across Hong Kong. Patients completed a waiting room survey collecting data on socio-demographics and the PHQ-9. Blinded doctors documented whether they thought the patient had depression. Data were analyzed using multiple logistic regression and conditional inference decision tree modeling.
Results
PCPs diagnosed 594 patients with depression. Logistic regression identified gender, age, employment status, past history of depression, family history of mental illness and recent doctor visit as factors associated with a depression diagnosis. Tree analyses revealed different pathways of association between PHQ-9 symptoms and depression diagnosis for patients with and without past depression. The PHQ-9 symptom model revealed low mood, sense of worthlessness, fatigue, sleep disturbance and functional impairment as early classifiers. The PHQ-9 total score model revealed cut-off scores of >12 and >15 were most frequently associated with depression diagnoses in patients with and without past depression.
Conclusions
A past history of depression is the most significant factor associated with the diagnosis of depression. PCPs appear to utilize a hypothetical-deductive problem-solving approach incorporating pre-test probability, with different associated factors for patients with and without past depression. Diagnostic thresholds may be too low for patients with past depression and too high for those without, potentially leading to over and under diagnosis of depression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.