We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fast-electron beam stopping mechanisms in media ranging from solid to warm dense matter have been investigated experimentally and numerically. Laser-driven fast electrons have been transported through solid Al targets and shock-compressed Al and plastic foam targets. Their propagation has been diagnosed via rear-side optical self-emission and Kα X-rays from tracer layers. Comparison between measurements and simulations shows that the transition from collision-dominated to resistive field-dominated energy loss occurs for a fast-electron current density ~5 × 1011 A cm−2. The respective increases in the stopping power with target density and resistivity have been detected in each regime. Self-guided propagation over 200μm has been observed in radially compressed targets due to ~1kT magnetic fields generated by resistivity gradients at the converging shock front.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.