We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
To evaluate the dynamic properties of a coupled structure based on the dynamic properties of its substructures, this paper investigates the dynamic substructuring issue from the perspective of response prediction. The main idea is that the connecting forces at the interface of substructures can be expressed by the unknown coupled structural responses, and the responses can be solved rather easily. Not only rigidly coupled structures but also resiliently coupled structures are investigated. In order to further comprehend and visualize the nature of coupling problems, the Neumann series expansion for a matrix describing the relation between the coupled and uncoupled substructures is also introduced in this paper. Compared with existing response prediction methods, the proposed method does not have to measure any forces, which makes it easier to apply than the others. Clearly, the frequency response function matrix of coupled structures can be derived directly based on the response prediction method. Compared with existing frequency response function synthesis methods, it is more straightforward and comprehensible. Through demonstration of two examples, it is concluded that the proposed method can deal with structural coupling problems very well.
Fluid motion has two well-known fundamental processes: the vector transverse process characterized by vorticity, and the scalar longitudinal process consisting of a sound mode and an entropy mode, characterized by dilatation and thermodynamic variables. The existing theories for the sound mode involve the multi-variable issue and its associated difficulty of source identification. In this paper, we define the source of sound inside the fluid by the objective causality inherent in dynamic equations relevant to a longitudinal process, which naturally favours the material time-rate operator $D/Dt$ rather than the local time-rate operator $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t$, and describes the sound mode by inhomogeneous advective wave equations. The sources of sound physical production inside the fluid are then examined at two levels. For the conventional formulation in terms of thermodynamic variables at the first level, we show that the universal kinematic source can be condensed to a scalar invariant of the surface deformation tensor. Further, in the formulation in terms of dilatation at the second level, we find that the sound mode in viscous and heat-conducting flow has sources from rich nonlinear couplings of vorticity, entropy and surface deformation, which cannot be disclosed at the first level. Preliminary numerical demonstration of the theoretical findings is made for two typical compressible flows, i.e. the interaction of two corotating Gaussian vortices and the unsteady type IV shock/shock interaction. The results obtained in this study provide a new theoretical basis for, and physical insight into, understanding various nonlinear longitudinal processes and the interactions therein.
Many MRI studies have cited major depression, with or without anti-depressive treatment, associated with structural plasticity changing in several brain regions. Few of these studies researched the effect of the anti-depressive treatment, electroconvulsive therapy (ECT), on depression.
Objective
To assess the influence of ECT on the brain structure change during the treatment process by utilizing the voxel-based morphometry (VBM) analysis.
Aims
To determine whether ECT alter brain structure.
Methods
We performed HAMD ratings and MRI scans on 12 depressive patients during ECT, analyzing the data by VBM with SPM8 software's family-wise error correction (FWE).
Results
The researchers found volumes changes in white matter in 37 regions between pre-ECT and post-ECT1, but only one region changing between pre-ECT and post-ECT8. Seven regions changing in grey matter between pre-ECT and post-ECT 1⌧but none regions changing between pre-ECT and post-ECT8.
Conclusions
The density changes in several brain regions after a single ECT stimuli, but return to the original level after completing the eighth ECT. Our finding supports that ECT may play a temporary role in treating major depression but do not permanently alter the structures of brain.
The aim of this study was to develop and externally validate a simple-to-use nomogram for predicting the survival of hospitalised human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients (hospitalised person living with HIV/AIDS (PLWHAs)). Hospitalised PLWHAs (n = 3724) between January 2012 and December 2014 were enrolled in the training cohort. HIV-infected inpatients (n = 1987) admitted in 2015 were included as the external-validation cohort. The least absolute shrinkage and selection operator method was used to perform data dimension reduction and select the optimal predictors. The nomogram incorporated 11 independent predictors, including occupation, antiretroviral therapy, pneumonia, tuberculosis, Talaromyces marneffei, hypertension, septicemia, anaemia, respiratory failure, hypoproteinemia and electrolyte disturbances. The Likelihood χ2 statistic of the model was 516.30 (P = 0.000). Integrated Brier Score was 0.076 and Brier scores of the nomogram at the 10-day and 20-day time points were 0.046 and 0.071, respectively. The area under the curves for receiver operating characteristic were 0.819 and 0.828, and precision-recall curves were 0.242 and 0.378 at two time points. Calibration plots and decision curve analysis in the two sets showed good performance and a high net benefit of nomogram. In conclusion, the nomogram developed in the current study has relatively high calibration and is clinically useful. It provides a convenient and useful tool for timely clinical decision-making and the risk management of hospitalised PLWHAs.
Tuberculosis (TB) is the leading cause of death among infectious diseases. China has a high burden of TB and accounted for almost 13% of the world's cases of multi-drug resistant (MDR) TB. Spinal TB is one reason for the resurgence of TB in China. Few large case studies of MDR spinal TB in China have been conducted. The aim of this research was to observe the epidemiological characteristics of inpatients with MDR spinal TB in six provinces and cities of China from 1999–2015. This is a multicentre retrospective observational study. Patients' information was collected from the control disease centre and infectious disease database of hospitals in six provinces and cities in China. A total of 3137 patients with spinal TB and 272 patients with MDR spinal TB were analysed. The result showed that MDR spinal TB remains a public health concern and commonly affects patients 15–30 years of age (34.19%). The most common lesions involved the thoracolumbar spine (35.66%). Local pain was the most common symptom (98.53%). Logistic analysis showed that for spinal TB patients, reside in rural district (OR 1.79), advanced in years (OR 1.92) and high education degree (OR 2.22) were independent risk factors for the development of MDR spinal TB. Women were associated with a lower risk of MDR spinal TB (OR 0.48). The most common first-line and second-line resistant drug was isoniazid (68.75%) and levofloxacin (29.04%), respectively. The use of molecular diagnosis resulted in noteworthy clinical advances, including earlier initiation of MDR spinal TB treatment, improved infection control and better clinical outcome. Chemotherapy and surgery can yield satisfactory outcomes with timely diagnosis and long-term treatment. These results enable a better understanding of the MDR spinal TB in China among the general public.
The hydroelastic waves in a channel covered by an ice sheet, without or with crack and subject to various edge constraints at channel banks, are investigated based on the linearized velocity potential theory for the fluid domain and the thin-plate elastic theory for the ice sheet. An effective analytical solution procedure is developed through expanding the velocity potential and the fourth derivative of the ice deflection to a series of cosine functions with unknown coefficients. The latter are integrated to obtain the expression for the deflection, which involves four constants. The procedure is then extended to the case with a longitudinal crack in the ice sheet by using the Dirac delta function and its derivatives at the crack in the dynamic equation, with unknown jumps of deflection and slope at the crack. Conditions at the edges and crack are then imposed, from which a system of linear equations for the unknowns is established. From this, the dispersion relation between the wave frequency and wavenumber is found, as well as the natural frequency of the channel. Extensive results are then provided for wave celerity, wave profiles and strain in the ice sheet. In-depth discussions are made on the effects of the edge condition, and the crack.
Enhancing the supply of arginine (Arg), a semi-essential amino acid, has positive effects on immune function in dairy cattle experiencing metabolic stress during early lactation. Our objective was to determine the effects of Arg supplementation on biomarkers of liver damage and inflammation in cows during early lactation. Six Chinese Holstein lactating cows with similar BW (508 ± 14 kg), body condition score (3.0), parity (4.0 ± 0), milk yield (30.6 ± 1.8 kg) and days in milk (20 ± days) were randomly assigned to three treatments in a replicated 3 × 3 Latin square design balanced for carryover effects. Each period was 21 days with 7 days for infusion and 14 days for washout. Treatments were (1) Control: saline; (2) Arg group: saline + 0.216 mol/day l-Arg; and (3) Alanine (Ala) group: saline + 0.868 mol/day l-Ala (iso-nitrogenous to the Arg group). Blood and milk samples from the experimental cows were collected on the last day of each infusion period and analyzed for indices of liver damage and inflammation, and the count and composition of somatic cells in milk. Compared with the Control, the infusion of Arg led to greater concentrations of total protein, immunoglobulin M and high density lipoprotein cholesterol coupled with lower concentrations of haptoglobin and tumor necrosis factor-α, and activity of aspartate aminotransferase in serum. Infusion of Ala had no effect on those biomarkers compared with the Control. Although milk somatic cell count was not affected, the concentration of granulocytes was lower in response to Arg infusion compared with the Control or Ala group. Overall, the biomarker analyses indicated that the supplementation of Arg via the jugular vein during early lactation alleviated inflammation and metabolic stress.
Seasonal influenza virus epidemics have a major impact on healthcare systems. Data on population susceptibility to emerging influenza virus strains during the interepidemic period can guide planning for resource allocation of an upcoming influenza season. This study sought to assess the population susceptibility to representative emerging influenza virus strains collected during the interepidemic period. The microneutralisation antibody titers (MN titers) of a human serum panel against representative emerging influenza strains collected during the interepidemic period before the 2018/2019 winter influenza season (H1N1-inter and H3N2-inter) were compared with those against influenza strains representative of previous epidemics (H1N1-pre and H3N2-pre). A multifaceted approach, incorporating both genetic and antigenic data, was used in selecting these representative influenza virus strains for the MN assay. A significantly higher proportion of individuals had a ⩾four-fold reduction in MN titers between H1N1-inter and H1N1-pre than that between H3N2-inter and H3N2-pre (28.5% (127/445) vs. 4.9% (22/445), P < 0.001). The geometric mean titer (GMT) of H1N1-inter was significantly lower than that of H1N1-pre (381 (95% CI 339–428) vs. 713 (95% CI 641–792), P < 0.001), while there was no significant difference in the GMT between H3N2-inter and H3N2-pre. Since A(H1N1) predominated the 2018–2019 winter influenza epidemic, our results corroborated the epidemic subtype.
Heading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.
The aim of the study was to investigate any association between extrauterine growth restriction (EUGR) and intestinal flora of <30-week-old preterm infants. A total of 59 preterm infants were assigned to EUGR (n=23) and non-EUGR (n=36) groups. Intestinal bacteria were compared by using high-throughput sequencing of bacterial rRNA. The total abundance of bacteria in 344 genera (7568 v. 13,760; P<0.0001) and 456 species (10,032 v. 18,240; P<0.0001) was significantly decreased in the EUGR group compared with the non-EUGR group. After application of a multivariate logistic model and adjusting for potential confounding factors, as well as false-discovery rate corrections, we found four bacterial genera with higher and one bacterial genus with lower abundance in the EUGR group compared with the control group. In addition, the EUGR group showed significantly increased abundances of six species (Streptococcus parasanguinis, Bacterium RB5FF6, two Klebsiella species and Microbacterium), but decreased frequencies of three species (one Acinetobacter species, Endosymbiont_of_Sphenophorus_lev and one Enterobacter_species) compared with the non-EUGR group. Taken together, there were significant changes in the intestinal microflora of preterm infants with EUGR compared to preterm infants without EUGR.
Cultivated pastures in southern China are being used to improve forage productivity and animal performance, but studies on grazing behaviour of goats in these cultivated pastures are still rare. In the current study, the grazing behaviour of Yunling black goats under low (5 goats/ha) and high (15 goats/ha) stocking rates (SRs) was evaluated. Data showed that the proportion of time goats spent on activities was: eating (0.59–0.87), ruminating (0.05–0.35), walking (0.03–0.06) and resting (0.01–0.03). Compared with low SR, goats spent more time eating and walking, and less time ruminating and resting under high SR. Goats had similar diet preferences under both SR and preferred to eat grasses (ryegrass and cocksfoot) more than a legume (white clover). The distribution of eating time on each forage species was more uniform under high v. low SR. Bites/step, bite weight and daily intake were greater under low than high SR. Results suggest that the SR affects grazing behaviour of goats on cultivated pasture, and identifying an optimal SR is critical for increasing bite weight and intake.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
The objectives of this study were to determine the effect and mode of action of Saccharomyces cerevisiae (YST2) on enteric methane (CH4) mitigation in pigs. A total of 12 Duroc×Landrace×Yorkshire male finisher pigs (60±1 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups: a basal diet (control); and a basal diet supplemented with 3 g/YST2 (1.8×1010 live cells/g) per kg diet. At the end of 32-day experiment, pigs were sacrificed and redox potential (Eh), pH, volatile fatty acid concentration, densities of methanogens and acetogens, and expression of methyl coenzyme-M reductase subunit A gene were determined in digesta contents from the cecum, colon and rectum. Results showed that S. cerevisiae YST2 decreased (P<0.05) the average daily enteric CH4 production by 25.3%, lowered the pH value from 6.99 to 6.69 in the rectum, and increased the Eh value in cecum and colon by up to −55 mV (P<0.05). Fermentation patterns were also altered by supplementation of YST2 as reflected by the lower acetate, and higher propionate molar proportion in the cecum and colon (P<0.05), resulting in lower acetate : propionate ratio (P<0.05). Moreover, there was a 61% decrease in Methanobrevibacter species in the upper colon (P<0.05) and a 19% increase in the acetogen community in the cecum (P<0.05) of treated pigs. Results of our study concluded that supplementation of S. cerevisiae YST2 at 3 g/kg substantially decreased enteric CH4 production in pigs.
Bacillary dysentery continues to be a major health issue in developing countries and ambient temperature is a possible environmental determinant. However, evidence about the risk of bacillary dysentery attributable to ambient temperature under climate change scenarios is scarce. We examined the attributable fraction (AF) of temperature-related bacillary dysentery in urban and rural Hefei, China during 2006–2012 and projected its shifting pattern under climate change scenarios using a distributed lag non-linear model. The risk of bacillary dysentery increased with the temperature rise above a threshold (18·4 °C), and the temperature effects appeared to be acute. The proportion of bacillary dysentery attributable to hot temperatures was 18·74% (95 empirical confidence interval (eCI): 8·36–27·44%). Apparent difference of AF was observed between urban and rural areas, with AF varying from 26·87% (95% eCI 16·21–36·68%) in urban area to −1·90% (95 eCI −25·03 to 16·05%) in rural area. Under the climate change scenarios alone (1–4 °C rise), the AF from extreme hot temperatures (>31·2 °C) would rise greatly accompanied by the relatively stable AF from moderate hot temperatures (18·4–31·2 °C). If climate change proceeds, urban area may be more likely to suffer from rapidly increasing burden of disease from extreme hot temperatures in the absence of effective mitigation and adaptation strategies.
Cattleyak (hybrid of cattle and yak) exhibit higher capability in adaptability and production than cattle and yak, while the infertility of F1 males greatly restricts the effective utilization of this hybrid and little progress has been made on investigating the mechanisms of the cattleyak infertility. Cattleyak individuals at three development stages (10, 12 and 14-month old) were sampled in this work and the isobaric tag for relative and absolute quantification method was employed to identify differences between their testicular proteomes. The proteomic analysis identified 318 proteins differentially expressed with significance at 12-month stage and 327 at 14-month compared with 10-month stage, respectively. Compared with the testicular proteome from 10-month cattleyak, the gene ontology (GO) annotations of the differentially expressed proteins at 12 months did not indicate significant differences from those at 14 months, which confirmed the histological observation that germ cell reduction was more obvious and spermatogenic arrest may become more serious in 12-month-old cattleyak. On the other hand, 56 differentially expressed proteins were coexpressed at 12 and 14-month stage compared with 10-month stage, in which 32 proteins were upregulated and 24 downregulated. GO analysis revealed that most of the differently expressed proteins were involved in the molecular function of catalytic activity, transporter activity, oxidoreductase activity and protein binding. Further analysis indicated that the differently expressed proteins including testis-expressed protein 101 precursor, RNA-binding motif protein, X chromosome, putative RNA-binding protein 3, heparin-binding proteins, tudor domain-containing protein 1, glutathione S-transferases (GSTA2, GSTP1), heat shock-related 70 kDa protein 2, estradiol 17-β-dehydrogenase11, 2,4-dienoyl-CoA reductase and peroxiredoxin-2 were possibly associated with testis development and spermatogenesis, which could be selected as candidate proteins in future study to examine the mechanisms of cattleyak infertility.
At the end of 2013, China reported a countrywide outbreak of measles. From January to May 2014, we investigated the clinical and immunological features of the cases of the outbreak admitted to our hospital. In this study, all 112 inpatients with clinically diagnosed measles were recruited from the 302 Military Hospital of China. The virus was isolated from throat swabs from these patients, and cytokine profiles were examined. By detecting the measles virus of 30 of the 112 patients, we found that this measles outbreak was of the H1 genotype, which is the major strain in China. The rates of complications, specifically pneumonia and liver injury, differed significantly in patients aged <8 months, 8 months to 18 years, and >18 years: pneumonia was more common in children, while liver injury was more common in adults. Pneumonia was a significant independent risk factor affecting measles duration. Compared to healthy subjects, measles patients had fewer CD4+IL-17+, CD4+IFN-γ+, and CD8+IFN-γ+ cells in both the acute and recovery phases. In contrast, measles patients in the acute phase had more CD8+IL-22+ cells than those in recovery or healthy subjects. We recommend that future studies focus on the age-related distribution of pneumonia and liver injury as measles-related complications as well as the association between immunological markers and measles prognosis.
The objective of this study was to determine if a moderate or high reduction of dietary CP, supplemented with indispensable amino acids (IAA), would affect growth, intestinal morphology and immunological parameters of pigs. A total of 40 barrows (initial BW=13.50±0.50 kg, 45±2 day of age) were used in a completely randomized block design, and allocated to four dietary treatments containing CP levels at 20.00%, 17.16%, 15.30% and 13.90%, respectively. Industrial AA were added to meet the IAA requirements of pigs. After 4-week feeding, blood and tissue samples were obtained from pigs. The results showed that reducing dietary CP level decreased average daily gain, plasma urea nitrogen concentration and relative organ weights of liver and pancreas (P<0.01), and increased feed conversion ratio (P<0.01). Pigs fed the 13.90% CP diet had significantly lower growth performance than that of pigs fed higher CP at 20.00%, 17.16% or 15.30%. Moreover, reducing dietary CP level decreased villous height in duodenum (P<0.01) and crypt depth in duodenum, jejunum and ileum (P<0.01). The reduction in the dietary CP level increased plasma concentrations of methionine, alanine (P<0.01) and lysine (P<0.05), and decreased arginine (P<0.05). Intriguingly, reducing dietary CP level from 20.00% to 13.90% resulted in a significant decrease in plasma concentration of IgG (P<0.05), percentage of CD3+T cells of the peripheral blood (P<0.01), also down-regulated the mRNA abundance of innate immunity-related genes on toll-like receptor 4, myeloid differentiation factor 88 (P<0.01) and nuclear factor kappa B (P<0.05) in the ileum. These results indicate that reducing dietary CP level from 20.00% to 15.30%, supplemented with IAA, had no significant effect on growth performance and had a limited effect on immunological parameters. However, a further reduction of dietary CP level up to 13.90% would lead to poor growth performance and organ development, associated with the modifications of intestinal morphology and immune function.