We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the dynamics of close-contact melting (CCM) on ‘gas-trapped’ hydrophobic surfaces, with specific focus on the effects of geometrical confinement and the liquid–air meniscus below the liquid film. By employing dual-series and perturbation methods under the assumption of small meniscus deflections, we obtain numerical solutions for the effective slip lengths associated with velocity $\lambda$ and temperature $\lambda _t$ fields, across various values of aspect ratio $\Lambda$ (defined as the ratio of the film thickness $h$ to the structure’s periodic length $l$) and gas–liquid fraction $\phi$. Asymptotic solutions of $\lambda$ and $\lambda _t$ for $\Lambda \ll 1$ and $\Lambda \gg 1$ are derived and summarised for different surface structures, interface shapes and $\Lambda$, which reveal a different trend of $\lambda$ for $\Lambda \ll 1$ and depending on the presence of a meniscus. In the context of constant-pressure CCM, our results indicate that longitudinal grooves can enhance heat transfer under the effects of confinement and a meniscus when $\Lambda \lesssim 0.1$ and $\phi \lt 1 - 0.5^{2/3} \approx 0.37$. For gravity-driven CCM, the parameters of $l$ and $\phi$ determine whether the melting rate is enhanced, reduced or nearly unaffected. We construct a phase diagram based on the parameter matrix $(\log _{10} l, \phi )$ to delineate these three regimes. Lastly, we derive two asymptotic solutions for predicting the variation in time of the unmelted solid height.
In this paper, we prove that the third near-infrared (NIR-III) window high-power laser with wavelength in the range of 1600–1800 nm can be obtained by the coherent Raman fiber amplification technique through theoretical and experimental study. Detailed numerical simulation reveals that the nonlinear dynamics of the Raman fiber amplification in the polarization-maintaining double-clad erbium-ytterbium co-doped fiber is similar to that of the Mamyshev oscillator. Through the spectral filtering effect induced by finite Raman gain, we can obtain a high-quality Raman pulse. According to the theoretical results, we design a simple Raman fiber amplification laser and finally obtain a high-quality watt-level NIR-III window laser pulse in which the central wavelength is about 1650 nm and the pulse width can reach 85 fs. The experimental results correspond to the simulation results. Such nonlinear effect is universal in all kinds of fibers, and we think this technology can provide a great contribution to the development of ultrafast fiber lasers.
Tryptophan (Trp) is an essential amino acid acting as a key nutrition factor regulating animal growth and development. But how Trp modulates food intake in pigs is still not well known. Here, we investigated the effect of dietary supplementation of Trp with different levels on food intake of growing pigs. The data showed that dietary Trp supplementation with the standardised ileal digestibility (SID) Trp to lysine (Lys) ratio at both 0·18 and 0·20 significantly increased the food intake by activating the expression of orexigenic gene agouti-related peptide (AgRP) and inhibiting the expression of anorexigenic gene pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART) and melanocortin receptor 4 (MC4R) in the hypothalamus. Meanwhile, the level of anorexigenic hormones appetite-regulating peptide YY (PYY) in the duodenum and serum and leptin receptor in the duodenum were also significantly decreased. Importantly, both the kynurenine and serotonin metabolic pathways were activated upon dietary Trp supplementation to downregulate MC4R expression in the hypothalamus. Further mechanistic studies revealed that the reduced MC4R expression activated the hypothalamic AMP-activated protein kinase (AMPK) pathway, which in turn inhibited the mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) activity to stimulate food intake. Together, our study unravels the orexigenic effect of dietary Trp supplementation in pigs and expands its potential application in developing nutrition intervention strategy in pig production.
Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes.
Methods
Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions.
Results
Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13.
Conclusions
The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.
COVID-19 carriers experience psychological stresses and mental health issues such as varying degrees of stigma. The Social Impact Scale (SIS) can be used to measure the stigmatisation of COVID-19 carriers who experience such problems.
Aims
To evaluate the reliability and validity of the Chinese version of the SIS, and the association between stigma and depression among asymptomatic COVID-19 carriers in Shanghai, China.
Method
A total of 1283 asymptomatic COVID-19 carriers from Shanghai Ruijin Jiahe Fangcang Shelter Hospital were recruited, with a mean age of 39.64 ± 11.14 years (59.6% male). Participants completed questionnaires, including baseline information and psychological measurements, the SIS and Self-Rating Depression Scale. The psychometrics of the SIS and its association with depression were examined through exploratory factor analysis, confirmatory factor analysis and receiver operating characteristic analysis.
Results
The average participant SIS score was 42.66 ± 14.61 (range: 24–96) years. Analyses suggested the model had four factors: social rejection, financial insecurity, internalised shame and social isolation. The model fit statistics of the four-factor SIS were 0.913 for the comparative fit index, 0.902 for the Tucker–Lewis index and 0.088 for root-mean-square error of approximation. Standard estimated factor loadings ranged from 0.509 to 0.836. After controlling for demographic characteristics, the total score of the 23-item SIS predicted depression (odds ratio: 1.087, 95% CI 1.061–1.115; area under the curve: 0.84, 95% CI 0.788–0.892).
Conclusions
The Chinese version of the SIS showed good psychometric properties and can be used to assess the level of perceived stigma experienced by asymptomatic COVID-19 carriers.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
Autism disorder (ASD) affects social, communication and behavioral patterns and appears in childhood. Although many interventions for autism have been developed, effective approaches to improving social adaptation and quality of life remain challenging. The integration of Chinese cultural elements, especially clothing design, may provide new ideas for the rehabilitation of autistic youth.
Subjects and Methods
The study included 30 autistic young people aged 18-25, who were randomly divided into the experimental group and the control group with 15 people each. The experimental group received 12 weeks of Chinese element costume design adjuvant therapy, including traditional costume making and cultural learning. The control group received social skills training. Stress response and cognitive status were evaluated with SASRQ and 3D-CAM. SPSS23.0 statistical analysis and independent sample T-test were used to compare the differences between the two groups.
Results
After treatment, the scores of the Stanford acute stress response questionnaire in the experimental group were significantly lower than those in the control group (P<0.05), indicating that their stress response had been alleviated to some extent. On the 3-minute disorder assessment scale, the cognitive status score of the experimental group was also significantly better than that of the control group (P < 0.05), indicating that the cognitive function had improved.
Conclusions
Chinese element clothing design assisted therapy actively reduces stress response and enhances cognitive state. Traditional costume design and cultural learning improve emotional management and cognition. Innovative psychological intervention supports the comprehensive treatment of autism, and cultural integration therapy is supported by empirical evidence.
This study aims at establishing a model for close-contact melting (CCM) of shear-thinning fluids. We presented a theoretical framework for predicting the variation of liquid melt film thickness and motion of unmelted solid for both Carreau and power-law fluids. We identified the appropriate energy equation considering the convective effect and derived an analytical temperature profile across the liquid film. Using the lubrication approximation, force equilibrium relationships and the corresponding numerical approaches were built. By using laser interferometry and photographic recording methods, we found excellent agreement between numerical solutions and experimental results for Carreau liquids, revealing that the convective effect weakens heat transfer and melting rate. We identified the critical liquid film thickness that determines three situations of CCM in the theoretical model for Carreau fluids. Numerical prediction demonstrated that the CCM of Carreau fluids can be almost equivalent to that of power-law fluids if the initial film thickness is greater than the critical value. Finally, approximate analytical models were developed for both Carreau and power-law models. For the applicability of the approximate analytical solutions, we derived two- and three-dimensional dimensionless phase diagrams of validity range and identified a key dimensionless group $(\varLambda Re)^{4/3}{Re}\left [3\ln (Ste+1)\right ]^{1/3}{Pe}^{-1/3}$, where $\varLambda$ is dimensionless characteristic time, Re is Reynolds number, Ste is Stefan number and Pe is Peclect number. The reliability of the approximate solutions was verified by comparing with the numerical results. These approximate solutions enable convenient and low-cost computational prediction of the dynamic CCM process of shear-thinning fluids.
In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $\unicode{x3bc}$m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $\unicode{x3bc}$m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.
Menaquinone-7 (MK-7), a multipotent vitamin K2, possesses a wide range of biological activities, a precise curative effect and excellent safety. A simple and rapid LC-APCI-MS/MS method for the determination of MK-7 in human plasma with single liquid–liquid extraction (LLE) extraction and 4·5-min analysis time has been developed and validated. Four per cent bovine serum albumin (BSA) was used as surrogate matrix for standard curves and endogenous baseline subtraction. This method was reproducible and reliable and was used to analyse of MK-7 in human plasma. The endogenous circadian rhythm and bioavailability of MK-7 were investigated in two randomised single-dose, open, one-way clinical trials (Study I and Study II). A total of five healthy male subjects were enrolled in Study I and 12 healthy male subjects in Study II. Single-dose (1 mg) of MK-7 was given to each subject under fasting condition, and all eligible subjects were given a restricting VK2 diet for 4 d prior to drug administration and during the trial. The experiment results of Study I demonstrated that endogenous MK-7 has no circadian rhythm in individuals. Both studies showed MK-7 are absorbed with peak plasma concentrations at about 6 h after intake and has a very long half-life time.
It remains unclear whether all physical activity (PA) domains (e.g., occupation-related PA [OPA], transportation-related PA [TPA], and leisure-time PA [LTPA]) have equivalent beneficial relationships. We aimed to investigate the associations of OPA, TPA, and LTPA with depressive symptoms in adults.
Methods
We included and analyzed 31,221 participants (aged ≥18 years) from the cross-sectional 2007–2018 U.S. National Health and Nutrition Examination Survey (NHANES). The PA domains were assessed by a self-report questionnaire and categorized based on the PA guidelines. Depressive symptoms were measured by the nine-item Patient Health Questionnaire.
Results
Participants achieving PA guidelines (≥150 min/week) were 26% (odds ratio [OR] 0.74, 95% confidence interval [CI] 0.68–0.80) and 43% (OR 0.57, 95% CI 0.51–0.62) less likely to have depressive symptoms depending on total PA and LTPA, respectively, while OPA or TPA did not demonstrate lower risks of depressive symptoms. LTPA at levels of 1–149, 150–299, and ≥300 min/week was associated with 31% (OR 0.69, 95% CI 0.60–0.78), 43% (OR 0.57, 95% CI 0.49–0.67), and 51% (OR 0.49, 95% CI 0.43–0.55) lower odds of depressive symptoms, respectively.
Conclusion
LTPA, but not OPA or TPA, was associated with a lower risk of depressive symptoms at any amount, suggesting that significant mental health would benefit from increased PA, even at levels below the recommendation.
Aiming at the problem of low accuracy of robot joint fault diagnosis, a fault diagnosis method of robot joint based on BP neural network is designed. In this paper, the UR10 robot is taken as the research object, and the end pose data of the robot are collected in real time. By injecting different joint errors and changing the sampling frequency, the joint fault database is collected and established, and the BP neural network is used for training to obtain the robot neural network fault diagnosis model. The fault diagnosis model can output the joint fault of the input end pose data. And we analyzed the influence of different joint angle errors and different training sets on the accuracy of joint fault diagnosis of the robot. The results show that when the sampling frequency is 250 Hz, the simulation result of joint fault diagnosis accuracy with the fault degree of 0.5° is 99.17%, and the experimental result is 97.87%. Compared with traditional data-driven methods, it has higher accuracy and diagnostic efficiency, and compared with existing machine learning methods, it also achieves a high accuracy while reducing the network complexity. The effectiveness of the BP neural network robot joint fault diagnosis method is verified by experiments.
We examined whether physical activity (PA) explains the association between dietary inflammatory potential and osteoarthritis (OA) in the elderly. A total of 1249 elderly people (≥65 years) were eligible for this study from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016. The semi-quantitative Food Frequency Questionnaire (FFQ) and Global PA Questionnaire (GPAQ) were used to evaluate the diet and PA of the elderly, respectively. The multivariable logistic regression model estimated the odds ratio (OR) and 95% confidence interval (CI) between Energy-adjusted Dietary Inflammatory Index (E-DII) and OA. The interaction of E-DII and PA on depressive events was tested, and the mediation analysis of PA was performed. The average E-DII in this study was +0.68 (SE 0.08), and the score ranges from -5.32 (most anti-inflammatory) to +4.26 (most pro-inflammatory). In comparison with the first quartile, the elderly from the second quartile (OR: 1.16 [95% CI: 1.06, 1.68]) to the fourth quartile (OR: 1.64 [95% CI: 1.13, 2.37]) had a higher risk of OA before adjustment for PA. An interaction was observed between E-DII and PA in terms of the risk of OA (PInteraction < 0.001). The whole related part was mediated by PA (20.08%). Our findings indicated that the higher pro-inflammatory potential of diet was associated with a higher risk of OA, and low PA was an important part of the mediating factor in the relationship between systemic low-grade dietary inflammation and the risk of OA.
Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is the northernmost distributed wild rice found in the world. Similar to other populations of O. rufipogon, DXWR contains a large number of agronomically valuable genes, which makes it a natural gene pool for rice breeding. Molecular markers, especially simple repeat sequence (SSR) markers, play important roles in plant breeding. Although a large number of SSR markers have been developed, most of them are derived from the genome coding sequences, rarely from non-coding sequences. Meanwhile, long non-coding RNAs (lncRNAs), which are derived from the transcription of non-coding sequences, play vital roles in plant growth, development and stress responses. In our previous study, we obtained 1655 lncRNA transcripts from DXWR using strand-specific RNA sequencing. In this study, 1878 SSR loci were detected from the lncRNA sequences of DXWR, and 1258 lncRNA-derived-SSR markers were developed on the genome-wide scale. To verify the validity and applicability of these markers, 72 pairs of primers were randomly selected to test 44 rice accessions. The results showed that 42 (58.33%) pairs of primers have abundant polymorphism among these rice materials; the polymorphism information content values ranged from 0.04 to 0.87 with an average of 0.50; the genetic diversity index of SSR loci varied from 0.04 to 0.88 with an average of 0.56; and the number of alleles per marker ranged from 2 to 11 with an average of 4.36. Thus, we concluded that these lncRNA-derived-SSR markers are a very useful source for future basic and applied research.
The superfluorescent fiber source (SFS) with tunable optical spectrum has shown great application potential in the sensing, imaging, and spectral combination. Here, we demonstrate for the first time a 2-kW-level wavelength and linewidth tunable SFS. Based on a flexible filtered SFS seed and three stages of fiber amplifiers, the output power can be scaled from the milliwatt level to about 2 kW, with a wavelength tuning range of 1068–1092 nm and a linewidth tuning range of 2.5–9.7 nm. Moreover, a numerical simulation is conducted based on the generalized nonlinear Schrödinger equation, and the results reveal that the wavelength tuning range is limited by the decrease of seed power and the growth of amplified spontaneous emission, whereas the linewidth tuning range is determined by the gain competition and nonlinear Kerr effects. The developed wavelength and linewidth tunable SFS may be applied to scientific research and industrial processing.
The coexistence of underweight (UW) and overweight (OW)/obese (OB) at the population level is known to affect iron deficiency (ID) anaemia (IDA), but how the weight status affects erythropoiesis during pregnancy is less clear at a population scale. This study investigated associations between the pre-pregnancy BMI (pBMI) and erythropoiesis-related nutritional deficiencies.
Design:
Anthropometry, blood biochemistry and 24-h dietary recall data were collected during prenatal care visits. The weight status was defined based on the pBMI. Mild nutrition deficiency-related erythropoiesis was defined if individuals had an ID, folate depletion or a vitamin B12 deficiency.
Setting:
The Nationwide Nutrition and Health Survey in Taiwan (Pregnant NAHSIT 2017–2019).
Participants:
We included 1456 women aged 20 to 45 years with singleton pregnancies.
Results:
Among these pregnant women, 9·6 % were UW, and 29·2 % were either OW (15·8 %) or OB (13·4 %). A U-shaped association between the pBMI and IDA was observed, with decreased odds (OR; 95 % CI) for OW subjects (0·6; 95 % CI (0·4, 0·9)) but increased odds for UW (1·2; 95 % CI (0·8, 2·0)) and OB subjects (1·2; 95 % CI (0·8, 1·8)). The pBMI was positively correlated with the prevalence of a mild nutritional deficiency. Compared to normal weight, OB pregnant women had 3·4-fold (3·4; 95 % CI (1·4, 8·1)) higher odds for multiple mild nutritional deficiencies, while UW individuals had lowest odds (0·3; 95 % CI (0·1, 1·2)). A dietary analysis showed negative relationships of pBMI with energy, carbohydrates, protein, Fe and folate intakes, but positive relationship with fat intakes.
Conclusion:
The pre-pregnancy weight status can possibly serve as a good nutritional screening tool for preventing IDA during pregnancy.
A deep ice core was drilled at Dome A, Antarctic Plateau, East Antarctica, which started with the installation of a casing in January 2012 and reached 800.8 m in January 2017. To date, a total of 337 successful ice-core drilling runs have been conducted, including 118 runs to drill the pilot hole. The total drilling time was 52 days, of which eight days were required for drilling down and reaming the pilot hole, and 44 days for deep ice coring. The average penetration depths of individual runs were 1 and 3.1 m for the pilot hole drilling and deep ice coring, respectively. The quality of the ice cores was imperfect in the brittle zone (650−800 m). Some of the troubles encountered are discussed for reference, such as armoured cable knotting, screws falling into the hole bottom, and damaged parts, among others.
Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13–15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02–1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0–63.6% at lagged 9–11 months expanded to 68.0–71.0% at lagged 12–17 months, reaching the highest risk of 1.06 (95% CI 1.01–1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.
Dual-chirped difference frequency generation (DFG) is an advantageous technique for generating the broadband mid-infrared (IR) idler wave, which is inaccessible by a population-inversion-based laser system. In principle, the generated idler wave may even suffer a spectrum broadening compared with the driving pulsed lasers if the pump and signal waves are oppositely chirped. However, broadband phase-matching is always the determining factor for the resulting efficiency and the bandwidth of the generated idler wave. In this study, specific to an oppositely dual-chirped DFG scheme, we derive the precondition to realize broadband frequency conversion, wherein a negative $(1/\unicode[STIX]{x1D710}_{p}-1/\unicode[STIX]{x1D710}_{i})/(1/\unicode[STIX]{x1D710}_{s}-1/\unicode[STIX]{x1D710}_{i})$, in terms of the correlation coefficient of the group velocity ($\unicode[STIX]{x1D70E}$), is necessary. However, most birefringence bulk crystals can only provide the required material dispersions in limited spectral regions. We show that the periodically poled lithium niobate crystal that satisfies an inactive Type-II (eo-o) quasi-phase-matching condition has a stable negative $\unicode[STIX]{x1D70E}$ and exerts the expected broadband gain characteristic across an ultra-broad idler spectral region $(1.7{-}4.0~\unicode[STIX]{x03BC}\text{m})$. Finally, we propose and numerically verify a promising DFG configuration to construct a tunable mid-IR spectrum broader based on the broadband phase-matched oppositely dual-chirped DFG scheme.
Laboratory-based characterization and traceback of Clostridium butyricum isolates linked to outbreak cases of neonatal necrotizing enterocolitis (NEC) in a hospital in China.
Methods:
In total, 37 samples were collected during the NEC outbreak. Classical bacteriological methods were applied to isolate and identify Clostridium spp. Meanwhile, 24 samples collected after an outbreak were similarly tested. All Clostridium isolates were identified to species level as either C. butyricum or C. sporogenes. These isolates were subsequently subtyped using pulsed-field gel electrophoresis (PFGE). Genomic DNA was purified from 2 representative C. butyricum isolates and sequenced to completion.
Results:
Of 37 samples collected during the NEC outbreak, 17 (45.95%) were positive for Clostridium spp. One species, C. butyricum, was cultured from 10 samples. Another species cultured from 2 other samples was identified as C. sporogenes. Both of these species were cocultured from 5 samples. Pulsotyping showed that the 15 C. butyricum and the 7 C. sporogenes isolates produced indistinguishable DNA profiles. No NEC cases were reported after disinfection following the outbreak, and all samples collected after the outbreak were negative for Clostridium spp. Whole-genome sequencing (WGS) indicated that sialidase, hemolysin, and enterotoxin virulence factors were located on the chromosomes of 2 C. butyricum isolates.
Conclusions:
The outbreak of NEC was epidemiologically linked to C. butyricum contamination within the hospital. This is the first report of an NEC outbreak associated with C. butyricum infection in China.