We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Experimental and numerical observations in turbulent shear flows point to the persistence of the anisotropy imprinted by the large-scale velocity gradient down to the smallest scales of turbulence. This is reminiscent of the strong anisotropy induced by a mean passive scalar gradient, which manifests itself by the ‘ramp–cliff’ structures. In the shear flow problem, the anisotropy can be characterised by the odd-order moments of $\partial _y u$, where $u$ is the fluctuating streamwise velocity component, and $y$ is the direction of mean shear. Here, we extend the approach proposed by Buaria et al. (Phys. Rev. Lett., 126, 034504, 2021) for the passive scalar fields, and postulate that fronts of width $\delta \sim \eta Re_\lambda ^{1/4}$, where $\eta$ is the Kolmogorov length scale, and $Re_\lambda$ is the Taylor-based Reynolds number, explain the observed small-scale anisotropy for shear flows. This model is supported by the collapse of the positive tails of the probability density functions (PDFs) of $(\partial _y u)/(u^{\prime }/\delta )$ in turbulent homogeneous shear flows (THSF) when the PDFs are normalised by $\delta /L$, where $u^{\prime }$ is the root-mean-square of $u$ and $L$ is the integral length scale. The predictions of this model for the odd-order moments of $\partial _y u$ in THSF agree well with direct numerical simulation (DNS) and experimental results. Moreover, the extension of our analysis to the log-layer of turbulent channel flows (TCF) leads to the prediction that the odd-order moments of order $p (p \gt 1)$ of $\partial _y u$ have power-law dependencies on the wall distance $y^{+}$: $\langle (\partial _y u)^p \rangle /\langle (\partial _y u)^2 \rangle ^{p/2} \sim (y^{+})^{(p-5)/8}$, which is consistent with DNS results.
Zircon U-Pb geochronology, geochemistry and Hf isotope analysis of supracrustal rocks in the Anshan-Benxi area in the northeastern part of the North China Craton can help constrain their petrogenesis and tectonic background, providing evidence for a further investigation of the late Neoarchaean tectonic environment in the Anshan-Benxi area. The primary rock types observed among the supracrustal rocks in the Anshan-Benxi area comprise amphibolite, metamorphic rhyolite, metamorphic sandstone, chlorite schist, actinolite schist, among others. SHRIMP zircon U-Pb dating indicates that magmatic zircons from the amphibolite (GCN-1) formed at 2553 ± 18Ma. Similarly, LA-ICP-MS zircon U-Pb dating reveals that magmatic zircons from the metamorphic rhyolite (G2304-1) were formed at 2457 ± 35Ma. The peak age of the metamorphic sandstone is determined to be approximately 2500Ma, suggesting that the supracrustal rocks in the Anshan-Benxi area originated in the late Neoarchaean. The protoliths of sericite quartz schist and metamorphic rhyolite are identified as rhyolitic volcanic rocks, displaying a right-leaning distribution pattern of rare earth elements (REEs). On the other hand, actinolite schist, chlorite schist and amphibolite are classified as basaltic volcanic rocks, exhibiting a flat REE pattern with a weak negative Eu anomaly. The εHf(t) value of metamorphic rhyolite ranges between -1.19 and -1.47, with a two- stage depleted mantle model age of tDM2(Ma) = 2922–3132 Ma. The protolith magma of sericite quartz schist and metamorphic rhyolite originates from partial melting of 3.0Ga basaltic crust, while the source of actinolite schist, chlorite schist and amphibolite are mainly derived from the mantle. In summary, the findings suggest that plate already existed in the late Neoarchaean or earlier, with magmatism in the Anshan-Benxi area likely occurring within an arc tectonic environment linked to plate subduction.
The presence of dispersed-phase droplets can result in a notable increase in a system's drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid–liquid two-phase turbulence in a Taylor–Couette geometry. The dispersed phase has the same density and viscosity as the continuous phase. The Reynolds number $Re\equiv r_i\omega _i d/\nu$ is fixed at 5200, the volume fraction of the dispersed phase is up to $40\,\%$, and the Weber number $We\equiv \rho u^2_\tau d/\sigma$ is approximately 8. It is found that the increase in the system's drag originates from the contribution of interfacial tension. Specifically, droplets experience significant deformation and stretching in the streamwise direction due to shear near the inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This causes opposing interfacial tension effects on the fore head and rear end of the droplets. For the fore head of the droplets, the effect of interfacial tension appears to act against the flow direction. For the rear end, the effect appears to act in the flow direction. The increase in the system's drag is attributed primarily to the effect of interfacial tension on the fore head of the droplets which leads to the hindering effect of the droplets on the surrounding continuous phase. This hindering effect disrupts the formation of high-speed streaks, favouring the formation of low-speed ones, which are generally associated with higher viscous stress and drag of the system. This study provides new insights into the mechanism of drag enhancement reported in our previous experiments.
The variable stator vanes (VSV) are a set of typical spatial linkage mechanisms widely used in the variable cycle engine compressor. Various factors influence the angle adjustment precision of the VSV, leading to the failure of the mechanism. The reliability analysis of VSV is a complex task due to the involvement of multiple components, high dimensionality input and computational inefficiency. Considering the hierarchical characteristics of VSV structure, we propose a novel multi-layer Kriging surrogate (MLKG) for the reliability analysis of VSV. The MLKG combines multiple Kriging surrogate models arranged in a hierarchical structure. By breaking the problem down into more minor problems, MLKG works by presenting each small problem as a Kriging model and reducing the input dimension of the sub-layer Kriging model. In this way, the MLKG can capture the complex interactions between the inputs and outputs of the problem while maintaining a high degree of accuracy and efficiency. This study proves the error propagation process of MLKG. To evaluate MLKG’s accuracy, we test it on two typical high-dimensional non-linearity functions (Rosenbrock and Michalewicz function). We compared MLKG with some contemporary KG surrogate modeling techniques using mean squared error (MSE) and R square (${R^2}$). Results show that MLKG achieves an excellent level of accuracy for reliability analysis in high-dimensional problems with a small number of sample points.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
We investigate the coupling effects of the two-phase interface, viscosity ratio and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor–Couette turbulence at a system Reynolds number of $6\times 10^3$ and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses on four different scenarios: neutral droplets, low-viscosity droplets, light droplets and low-viscosity light droplets. We find that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement through the two-phase interface, whereas light droplets reduce the system's drag by explicitly reducing Reynolds stress due to the density dependence of Reynolds stress. In addition, low-viscosity light droplets contribute to greater drag reduction by further reducing momentum transport near the inner cylinder and implicitly reducing Reynolds stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag enhancement is not strongly correlated with TKE transport for both neutral droplets and low-viscosity droplets. Light droplets primarily reduce the production term by diminishing Reynolds stress, whereas the density contrast between the phases boosts TKE transport near the inner wall. Therefore, the reduction in the dissipation rate is predominantly attributed to decreased turbulence production, causing drag reduction. For low-viscosity light droplets, the production term diminishes further, primarily due to their greater reduction in Reynolds stress, while reduced viscosity weakens the density difference's contribution to TKE transport near the inner cylinder, resulting in a more pronounced reduction in the dissipation rate and consequently stronger drag reduction. Our findings provide new insights into the physics of turbulence modulation by the dispersed phase in two-phase turbulence systems.
The COVID-19 pandemic has impacted patient’s visits to general practitioners (GPs). However, it is unclear what the impact of COVID-19 has been on the interaction among the local primary care clinics, the GP Department within the hospital and specialists.
Methods:
The interaction among GPs referring to hospital-based specialists and specialists to local doctors was determined, comparing pre-pandemic 2019 and 2020 during the pandemic.
Results:
Reduced referrals from GPs to specialists were consistent with the reduction in specialist referrals back to the local doctors, which dropped by approximately 50% in 2020, particularly in the two most common chronic conditions (hypertension and diabetes mellitus).
Discussion:
Reduced referral of patients from local clinics to Tongren Hospital is probably due to the extensive online training provided to the local GPs to become more competent in handling local patients via telehealth. Our data provide some insight to assist in combatting the pandemic of COVID-19, offering objective evidence of the impact of COVID-19 on patient management by GPs.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb–neogenin–Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)–RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2–RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Accurate online estimation of the payload parameters benefits robot control. In the existing approaches, however, on the one hand, only the linear friction model was used for online payload identification, which reduced the online estimation accuracy. On the other hand, the estimation models contain much noise because of using actual joint trajectory signals. In this article, a new estimation algorithm based on parameter difference for the payload dynamics is proposed. This method uses a nonlinear friction model for the online payload estimation instead of the traditionally linear one. In addition, it considers the commanded joint trajectory signals as the computation input to reduce the model noise. The main contribution of this article is to derive a symbolic relationship between the parameter difference and the payload parameters and then apply it to the online payload estimation. The robot base parameters without payload were identified offline and regarded as the prior information. The one with payload can be solved online by the recursive least squares method. The dynamics of the payload can be then solved online based on the numerical difference of the two parameter sets. Finally, experimental comparisons and a manual guidance application experiment are shown. The results confirm that our algorithm can improve the online payload estimation accuracy (especially the payload mass) and the manual guidance comfort.
Methionine (Met) can activate the mechanistic target of rapamycin (mTOR) to promote milk synthesis in mammary epithelial cells. However, it is largely unknown which G protein-coupled receptor can mediate the stimulation of Met on mTOR activation. In this study, we employed transcriptome sequencing to analyse which G protein-coupled receptors were associated with the role of Met and further used gene function study approaches to explore the role of G protein-coupled receptor 183 (GPR183) in Met stimulation on mTOR activation in HC11 cells. We identified nine G protein-coupled receptors including GPR183 whose expression levels were upregulated by Met treatment through RNA sequencing and subsequent quantitative real-time PCR analysis. Using GPR183 knockdown and overexpression technology, we demonstrate that GPR183 is a positive regulator of milk protein and fat synthesis and proliferation of HC11 cells. Met affected GPR183 expression in a dose-dependent manner, and GPR183 mediated the stimulation of Met (0·6 mM) on milk protein and fat synthesis, cell proliferation and mTOR phosphorylation and mRNA expression. The inhibition of phosphoinositide 3-kinase blocked the phosphorylation of mTOR and AKT stimulated by GPR183 activation. In summary, through RNA sequencing and gene function study, we uncover that GPR183 is a key mediator for Met to activate the phosphoinositide 3-kinase-mTOR signalling and milk synthesis in mouse mammary epithelial cells.
To assess the efficacy and safety of two different modes of administration, external ear canal filling and smearing, in the treatment of otomycosis.
Methods
A computerised search of relevant published studies in the China National Knowledge Infrastructure, China Biology Medicine, Web of Science, PubMed, Embase and Cochrane Library databases that include randomised controlled trials or clinically controlled trials on the same drug in different modes of administration for the treatment of otomycosis.
Results
Seven studies with 934 patients were included. The filled group had a higher clinical efficacy (relative risk = 1.18, 95 per cent confidence interval (CI) 1.12–1.24, p < 0.0001) and a lower recurrence rate (relative risk = 0.29, 95 per cent CI 0.18–0.47, p < 0.0001) compared with the smear group, and there was no significant difference in the adverse effects (relative risk = 0.61, 95 per cent CI 0.34–1.12, p = 0.11).
Conclusion
Current evidence suggests that the efficacy of the delivery modality of the external auditory canal filling treatment is significantly better than external auditory canal smearing.
The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid–fluid two-phase Taylor–Couette turbulence. This quantity consists of contributions from advection, diffusion and two-phase interface, which are closely related to density, viscosity and interfacial tension, respectively. We found from interface-resolved direct numerical simulations that the presence of the two-phase interface consistently produces a positive contribution to the momentum transport and leads to drag enhancement, while decreasing the density and viscosity ratios of the dispersed phase to the continuous phase reduces the contribution of local advection and diffusion terms to the momentum transport, respectively, resulting in drag reduction. Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio work together to compete with the presence of a two-phase interface for achieving drag modulation in fluid–fluid two-phase turbulence.
To assess the association between the risk of malnutrition, as estimated by the Patient-Generated Subjective Global Assessment (PG-SGA) numerical scores, and adverse outcomes in oncology patients.
Design:
Systematic review and meta-analysis.
Settings:
A comprehensive search was conducted in PubMed, Web of Science, Embase, CKNI, VIP, Sinomed and Wanfang databases. Studies that examined the association between the risk of malnutrition, as estimated by the PG-SGA numerical scores, and overall survival (OS) or postoperative complications in oncology patients were included. Patients were classified as low risk (PG-SGA ≤ 3), medium risk (PG-SGA 4–8) and high risk of malnutrition (PG-SGA > 8).
Subject:
Nineteen studies reporting on twenty articles (n 9286 patients).
Results:
The prevalence of medium and high risk of malnutrition ranged from 16·0 % to 71·6 %. A meta-analysis showed that cancer patients with medium and high risk of malnutrition had a poorer OS (adjusted hazard ratios (HR) 1·98; 95 % CI 1·77, 2·21) compared with those with a low risk of malnutrition. Stratified analysis revealed that the pooled HR was 1·55 (95 % CI 1·17, 2·06) for medium risk of malnutrition and 2·65 (95 % CI 1·90, 3·70) for high risk of malnutrition. Additionally, the pooled adjusted OR for postoperative complications was 4·65 (95 % CI 1·61, 13·44) for patients at medium and high risk of malnutrition.
Conclusions:
The presence of medium and high risk of malnutrition, as estimated by the PG-SGA numerical scores, is significantly linked to poorer OS and an increased risk of postoperative complications in oncology patients.
COVID-19 carriers experience psychological stresses and mental health issues such as varying degrees of stigma. The Social Impact Scale (SIS) can be used to measure the stigmatisation of COVID-19 carriers who experience such problems.
Aims
To evaluate the reliability and validity of the Chinese version of the SIS, and the association between stigma and depression among asymptomatic COVID-19 carriers in Shanghai, China.
Method
A total of 1283 asymptomatic COVID-19 carriers from Shanghai Ruijin Jiahe Fangcang Shelter Hospital were recruited, with a mean age of 39.64 ± 11.14 years (59.6% male). Participants completed questionnaires, including baseline information and psychological measurements, the SIS and Self-Rating Depression Scale. The psychometrics of the SIS and its association with depression were examined through exploratory factor analysis, confirmatory factor analysis and receiver operating characteristic analysis.
Results
The average participant SIS score was 42.66 ± 14.61 (range: 24–96) years. Analyses suggested the model had four factors: social rejection, financial insecurity, internalised shame and social isolation. The model fit statistics of the four-factor SIS were 0.913 for the comparative fit index, 0.902 for the Tucker–Lewis index and 0.088 for root-mean-square error of approximation. Standard estimated factor loadings ranged from 0.509 to 0.836. After controlling for demographic characteristics, the total score of the 23-item SIS predicted depression (odds ratio: 1.087, 95% CI 1.061–1.115; area under the curve: 0.84, 95% CI 0.788–0.892).
Conclusions
The Chinese version of the SIS showed good psychometric properties and can be used to assess the level of perceived stigma experienced by asymptomatic COVID-19 carriers.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In order to minimize the initial energy storage of tens of MA-class Z-pinch accelerators, an intelligent optimization method was developed based on the transmission line code circuit model and PSOGSA algorithm. Using several input parameters, the four overall parameters of the Z-pinch accelerator could be fast determined, including the connection and parallel combination of LTD cavities, the outer radius of the stack-MITL system, and electrical length of monolithic radial transmission lines. The optimization method has been verified by comparing the results with the Z-300 and Z-800 conceptual designs. By means of this intelligent optimization, some factors that affect the initial energy storage on high-current Z-pinch accelerators have been investigated, such as the operating electrical fields, the diameter of the stack-MITL system, and the inner diameter of the LTD cavity. The suggestions for designing relatively low-cost, efficient LTD-based accelerators have been proposed.
Frequency modulation (FM)-to-amplitude modulation (AM) conversion is an important factor that affects the time–power curve of inertial confinement fusion (ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.