We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
We investigate the natural oscillations of sessile drops with a central trapped bubble on a plane using linear potential flow theory, considering both free and pinned contact lines. The system is governed by the contact angle $\alpha$ and the ratio $\tau$ of inner to outer contact line radii. For bubble-containing (BC) hemispherical drops with free contact lines (referred to as free BC semi-drops), the modes mirror half of those in concentric spherical BC drops due to plane symmetry. These modes are labelled ‘plus’ (with greater inner surface deformation) and ‘minus’ (with greater outer surface deformation). As $\tau \to 0$, minus modes converge to those of bubble-free drops. Results show that varying $\alpha$ from $90^\circ$ or pinning the contact line in free BC semi-drops alters the topology of spectral lines, turning original crossings of spectral lines between minus and plus modes into avoided crossings. This shift causes minus and plus modes to form spectral trends with avoided crossings, maintaining their original spectral shapes. In an avoided crossing, two coupled modes cannot be classified as plus or minus due to their comparable inner and outer surface deformations, resulting in mode beating when both are excited, as confirmed by our direct numerical simulations. This study on the impact of inner bubbles on the spectrum may help in predicting bubble size in opaque sessile drops.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
The vitamin K (VK) levels vary greatly among different populations and in different regions. Currently, there is a lack of reference intervals for VK levels in healthy individuals, The aim of this study is to establish and validate the reference intervals of serum vitamin K1 (VK1) and vitamin K2 (VK2, specifically including menaquinone-4 (MK4) and menaquinone-7 (MK7)) levels in some healthy populations in Beijing. Serum VK1, MK4, and MK7 were firstly measured by high-performance liquid chromatography and mass spectrometry in 434 subjects. The reference intervals for three indicators were established by calculating the data of 2.5 and 97.5 percentiles. Finally, preliminary clinical validation was conducted on 60 apparent healthy individuals undergoing physical examination. In the young, middle-aged, and elderly groups, the reference intervals of VK1 were 0.180 ng/mL ∼ 1.494 ng/mL, 0.247 ng/mL ∼ 1.446 ng/mL, and 0.167 ng/mL ∼ 1.445 ng/mL, respectively. The reference intervals of MK4 were 0.009 ng/mL ∼ 0.115 ng/mL, 0.002 ng/mL ∼ 0.103 ng/mL, and 0.003 ng/mL ∼ 0.106 ng/mL, respectively. The reference intervals of MK7 were 0.169 ng/mL ∼ 0.881 ng/mL, 0.238 ng/mL ∼ 0.936 ng/mL, and 0.213 ng/mL ∼ 1.012 ng/mL, respectively. The reference intervals had been validated by the samples of healthy individuals for physical examination. In conclusion, the reference intervals of VK established in this study with different age groups have certain clinical applicability, providing data support for further multicentre studies.
Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure to address this issue in the context of latent variable models. An application to nonlinear structural equation models is considered. Six perturbation schemes are investigated, including three schemes under which simultaneous perturbations are made on components of latent vectors to assess the influence of these components and pinpoint the influential ones. The proposed procedure is illustrated by artificial examples and a simulation study as well as a real example.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Tea can improve the progression of some metabolic diseases through anti-inflammatory and antioxidant effects, but its impact on non-alcoholic fatty liver disease (NAFLD) is still controversial. The aim of this paper is to identify the relationship between tea and NAFLD by Mendelian randomisation (MR) and complete clinical validation using National Health and Nutrition Examination Survey (NHANES) database. MR used data from Genome Wide Association Study, with inverse-variance weighted (IVW) as principal analytical methods. The reliability of the results was verified by a series of sensitivity and heterogeneity tests. Subsequently, clinical validation was conducted using NHANES (2005–2018), involving 22 257 participants, grouped by the type of tea. Green tea drinkers were categorised into four groups (Q1–Q4) by quartiles of green tea intake, from lowest to highest (similar for black tea drinkers and other tea drinkers). Models were constructed by logistic regression to estimate the role of tea consumption (Q1–4) on NAFLD. Finally, using fibrosis-4 index (FIB-4) to evaluate the severity of hepatic fibrosis, the effect of tea consumption (Q1–4) on the degree of hepatic fibrosis was investigated by linear regression. IVW method (OR = 0·43, 95 % CI: 0·21, 0·85, P = 0·01) and weighted median method (OR = 0·35, 95 % CI: 0·14, 0·91, P = 0·03) revealed there was a causal relationship between tea and NAFLD. An array of sensitivity analyses validated the reliability of results. Analysis of NHANES indicated tea drinker present a slightly lower prevalence of NAFLD than non-tea drinker (green tea drinkers: 47·6 %, black tea drinkers: 46·3 %, other tea drinker: 43·2 %, non-tea drinkers: 48·1 %, P < 0·05). After adjusting for confounders, compared with the lowest black tea consumption (Q1), the population with the highest black tea consumption (Q4) was independently related to lower presence of NAFLD (Q4: OR = 0·69, 95 % CI: 0·50, 0·93, P < 0·05), such association remained stable in the overweight subgroup. As further analysed, Q4 also displayed a significant negative correlation with the level of hepatic fibrosis in patients with NAFLD (β = –0·073, 95 % CI: –0·126, −0·020, P < 0·01).Tea reduces the morbidity of NAFLD and ameliorates hepatic fibrosis degree in those already suffering from the disease.
Understanding settling motion of coral grains is important in terms of protection of coral reef systems and resotoration of the associated ecosystems. In this paper, a series of laboratory experiments was conducted to investigate the settling motion, using optical microscopy to measure shape parameters of coral grains and the particle-filtering-based object tracking to reconstruct the three-dimensional trajectory. Three characteristic descent regimes, namely, tumbling, chaotic and fluttering, are classified based on the three-dimensional trajectory, the spiral radius variation and the velocity spectrum. It is demonstrated that if one randomly picks up one coral grain, then the probabilities of occurrence of the three regimes are approximately $26\,\%$, $42\,\%$ and $32\,\%$, respectively. We have shown that first, the dimensionless settling velocity generally increases with the non-dimensional diameter and Corey shape factor and second, the drag coefficient generally decreases with the Reynolds number and Corey shape factor. Based on this, the applicability of existing models on predicting settling velocity and drag coefficient for coral grains is demonstrated further. Finally, we have proposed extended models for predicting the settling velocity. This study contributes to better understanding of settling motion and improves our predictive capacity of settling velocity for coral grains with complex geometry.
In 2017, Brosseau & Vlahovska (Phys. Rev. Lett, vol. 119, no. 3, 2017, p. 034501) found that, in a strong electric field, a weakly conductive, low-viscosity droplet immersed in a highly conductive, high-viscosity medium formed a lens shape, and liquid rings continuously detached from its equatorial plane and subsequently broke up into satellite droplets. This fascinating multiphase electrohydrodynamic (EHD) phenomenon is known as droplet equatorial streaming. In this paper, based on the unified lattice Boltzmann method framework proposed by Luo et al. (Phil. Trans. R. Soc. A Math. Phys. Engng Sci, vol. 379, no. 2208, 2021, p. 20200397), a novel lattice Boltzmann (LB) model is constructed for multiphase EHD by coupling the Allen–Cahn type of multiphase LB model and two new LB equations to solve the Poisson equation of the electric field and the conservation equation of the surface charge. Using the proposed LB model, we successfully reproduced, for the first time, the complete process of droplet equatorial streaming, including the continuous ejection and breakup of liquid rings on the equatorial plane. In addition, it is found that, under conditions of high electric field strength or significant electrical conductivity contrast, droplets exhibit fingering equatorial streaming that was unknown before. A power-law relationship is discovered for droplet total charge evolution and a theoretical model is then proposed to describe the droplet radius and height over time. The breakup of liquid rings is found to be dominated by capillary instability, while the breakup of liquid fingers is governed by the end-pinching mechanism. Finally, a phase diagram is constructed for fingering equatorial streaming and ring equatorial streaming, and a criterion equation is established for the phase boundary.
Spacecraft can carry microbial contaminants from spacecraft assembly facilities (SAFs) to the cold arid surface of Mars that may confound life detection missions or disrupt native ecosystems. Dry hygroscopic sulphate and (per)chlorate salts on Mars may absorb atmospheric humidity and deliquesce at certain times to produce dense brines, potential sources of liquid water. Microbial growth is generally prohibited under the non-permissive condition of extremely low water activity in the frigid potential brines on Mars. Here we challenged the microbial community from samples of the Jet Propulsion Laboratory SAF with the extreme chemical conditions of brines relevant to Mars. Enrichment cultures in SP medium supplemented with 50% MgSO4 or 20% NaClO3 were inoculated from washes of SAF floor wipes. Samples were taken for each of the first four weeks and then at six months after inoculation to follow changes in the SAF microbial community under high salinity for long periods. Metagenomic DNA extracts of community samples were examined by Illumina sequencing of 18S rRNA gene sequences using fungal primers. The fungal assemblage during the first month of enrichment was predominantly common Ascomycetes, primarily Saccharomyete yeasts. Basidiomycetes were detected, mainly in the Microbotryomycetes and Tremellomycetes. Fungi were much less abundant in enrichment cultures at 50% MgSO4 than at 20% NaClO3. After 6 months of enrichment, few fungi remained. Microbes persisting from the JPL SAF microbial community in aged cultures enriched at extreme salinities might be the most capable of subsequently surviving and proliferating at the near surface of Mars. The SAF fungal assemblage did not survive and proliferate as well as the SAF bacterial community.
This paper explores the use of inkjet-printing technology for transparent transmitarrays, presenting a viable alternative to traditional copper microwire counterparts. The study focuses on achieving high-gain performance crucial for wireless communication systems, with a particular emphasis on the fifth-generation (5G) millimeter-wave communication. Transparent transmitarrays leverage transparent conducting films and conductive mesh structures, overcoming opacity limitations and seamlessly integrating with urban architecture. In this paper, the inkjet-printing process is detailed for fabricating transmitarray apertures, highlighting the flexibility and precision in depositing nanosilver particles onto a glass substrate. The design intricacies involve optimizing feeding characteristics, determining unit cell structures, and constructing transmitarrays of various sizes. To validate the proposed technique, three different apertures (15 × 15, 20 × 20, and 25 × 25 unit cells) are constructed. The antenna performances are evaluated in terms of reflection coefficients, radiation efficiency, realized gain, and patterns, demonstrating the effectiveness of inkjet-printed transmitarrays. Comparative analysis with copper microwire counterparts is also conducted, validating the inkjet-printing technology for similar gain performance with added advantages of flexibility, compatibility with transparent substrates, and cost-effective manufacturing.
We construct an autoregressive moving average (ARMA) model consisting of the history and random effects for the streamwise velocity fluctuation in boundary-layer turbulence. The distance to the wall and the boundary-layer thickness determine the time step and the order of the ARMA model, respectively. Based on the autocorrelation's analytical expression of the ARMA model, we obtain a global analytical expression for the second-order structure function, which asymptotically captures the inertial, dynamic and large-scale ranges. Specifically, the exponential autocorrelation of the ARMA model arises from the autoregressive coefficients and is modified to logarithmic behaviour by the moving-average coefficients. The asymptotic expressions enable us to determine model coefficients by existing parameters, such as the Kolmogorov and the Townsend–Perry constants. A consequent double-log expression for the characteristic length scale is derived and is justified by direct numerical simulation data with $Re_\tau \approx 5200$ and field-measured neutral atmospheric surface layer data with $Re_\tau \sim O(10^6)$ from the Qingtu Lake Observation Array site. This relation is robust because it applies to $Re_\tau$ from $O(10^4)$ to $O(10^6)$, and even when the statistics of natural ASL deviate from those of canonical boundary-layer turbulence, e.g. in the case of imbalance in energy production and dissipation, and when the Townsend–Perry constant deviates from traditional values.
In order to extend the application of magadiite to optical fields (rather than the usual focus on adsorption, catalysis, ion exchange, etc.), a magadiite-CdS (Mag-CdS) composite was synthesized from Na-magadiite by ion exchange. Various techniques were used to characterize the composite. X-ray diffraction results indicated that the Mag-CdS composite retained the host magadiite structure in spite of decrease in the intensity of the X-ray diffraction peak of the host magadiite. The analytical results confirmed the formation of the Mag-CdS composite, along with the modification of the optical properties of CdS by the host magadiite.
Interplanetary spacecraft are built in a spacecraft assembly facility (SAF), a clean room designed to reduce microbial contamination that could confound life detection missions or influence native ecosystems. The frigid hyperarid near-surface environment of Mars has ample hygroscopic Mg and Na salts of chloride, (per)chlorate and sulphate that may deliquesce to form dense brines, liquids with low water activity, and freezing points <0°C. The current study sought to define the climax microbial community after 6 mo of enrichment of SAF floor wipe samples in salt plains medium supplemented with 50% (w/v; ~2 M; aw = 0.94) MgSO4 or 20% (w/v; ~1.9 M; aw = 0.91) NaClO3. After 1 wk, 4 wk and 6 mo of incubation, metagenomic DNA extracts of the enriched SAF microbial community were used for high-throughput sequencing of 16S rRNA genes and subsequent phylogenetic analyses. Additionally, dozens of bacterial strains were isolated by repetitive streak-plating from the climax community after 6 mo of enrichment. Early in the enrichment, staphylococci greatly dominated and then remained abundant members of the community. However, actinobacteria succeeded the staphylococci as the dominant taxa as the cultures matured, including Arthrobacter, Brachybacterium and Brevibacterium. A diverse assemblage of bacilli was present, with Oceanobacillus being especially abundant. The SAF culture collection included representatives of Brachybacterium conglomeratum, Brevibacterium sediminis, Oceanobacillus picturae and Staphylococcus sciuri. These were characterized with biochemical and physiological tests, revealing their high salinotolerance. Shannon diversity indices were generally near 2, reflecting modest diversity at several levels of identity and the community structures were uneven throughout. However, minor members of the community seem capable of the ecosystem functions required for biogeochemical cycling. For instance, organisms capable of all the functions of the N cycle were detected. The microbial assemblage in SAFs is the most likely to be transported by spacecraft to another world. While individual microbial populations may exhibit the qualities needed for survival at the near-surface of Mars, certainly entire communities with the capacity for complete biogeochemical cycling, would have a greater chance of survival and proliferation.
The aim was to assess epidemiological characteristics of the most recent consumption patterns of meat, vegetable, and fruit among representative urban and rural residents aged 60+ years in regional China. In this cross-sectional survey conducted in mid-2018, participants aged 60+ years were randomly chosen from urban and rural communities in Nanjing municipality of China. Meat, vegetable, and fruit intake were assessed with a validated food frequency questionnaire. Multivariate logistic regression models were applied to compute odds ratio (OR) and 95 % confidence interval (CI) to investigate the association of socio-demographic characteristics with a likelihood of meeting intake recommendation. Among the 20 867 participants, 49⋅5 % were men and 45⋅0 % urban elders, and 6⋅5 % aged 80+ years. The mean values of consumption frequency of red meat, white meat, vegetable, and fruit were 2⋅99 ± 2⋅28, 1⋅37 ± 1⋅13, 5⋅24 ± 6⋅43, and 2⋅64 ± 2⋅91 times/week, respectively, among overall participants. Moreover, there were 14⋅9, 23⋅7, and 12⋅1 % of participants meeting intake recommendations of meat, vegetable, and fruit, separately, in this study. After adjustment for potential confounders, age, gender, residence area, and educational attainment each was associated with the likelihood of meeting intake recommendation of meat, vegetable, or fruit. The consumption frequency and proportion of participants meeting intake recommendations of meat, vegetable, or fruit were not high among elders in regional China. Socio-demographic characteristics were associated with intake recommendations of meat, vegetables, and fruit. It has public health implications that participants’ socio-demographic attributes shall be considered for precision intervention on meat, vegetable, and fruit consumption in healthy eating campaigns among elders in China.
Abnormalities in the zona pellucida (ZP) adversely affect oocyte maturation, embryo development and pregnancy outcomes. However, the assessment of severity is challenging. To evaluate the effects of different degrees of ZP abnormalities on embryo development and clinical outcomes, in total, 590 retrieval cycles were scored and divided into four categories (control, mild, moderate and severe) based on three parameters: perivitelline space, percentage of immature oocytes and percentage of oocytes with abnormal morphology. As the severity of abnormal ZP increased, both the number of retrieved oocytes and mature oocytes decreased. The fertilization rate did not differ significantly among groups. The rates of embryo cleavage and day-3 high-quality embryos in the mild group and the moderate group did not vary significantly between the two groups but were significantly higher than those in the severe group. The blastulation rates of the abnormal ZP groups were similar; however, they were lower than those of the control group. Moreover, the cycle cancellation rate of the severe abnormal ZP group was as high as 66.20%, which was significantly higher than that of the other three groups. Although the rates of cumulative clinical pregnancy and live births were lower than those in the control group, they were comparable among the abnormal ZP groups. There were no differences in the neonatal outcomes of the different groups. Together, ZP abnormalities show various degrees of severity, and in all patients regardless of the degree of ZP abnormalities who achieve available embryos, there will be an opportunity to eventually give birth.
COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns.
Methods
Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects.
Results
Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (β = 0.49, 95% confidence interval (CI) [0.19–0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94–4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (−0.11 [−0.17 to −0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus.
Conclusions
This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.