We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Traumatic brain injury (TBI)-induced anxiety is a common but under-investigated disorder, for which neuroinflammation is a significant contributor. Here we aim to investigate the protective effects of genistein, a plant-derived anti-inflammatory drug, against TBI-induced anxiety, and the underlying mechanisms.
Methods:
A rat model of TBI was constructed using the lateral fluid percussion injury method. Genistein at the doses of 5, 10, and 20 mg/kg were used to treat rats at 30 min, 12 h, 24 h, 48 h, and 72 h up to 14 days after TBI. The evaluation of neurological deficit was performed preoperatively, on days 1, 3, 7, and 14 after TBI. The elevated plus maze test was carried out to assess anxiety and explorative behaviours, and the open field test was performed to assess locomotive activities. Brain injury was assessed by measuring brain water content and TdT-mediated dUTP Nick-End Labeling staining. Inflammatory responses were examined using enzyme-linked immunosorbent assay. The mRNA and protein expression were analysed using real-time polymerase chain reaction and Western blot, respectively.
Results:
In the behavioural level, genistein treatment alleviated TBI-induced anxiety behaviours and neurological deficit in rats. In the meanwhile, brain oedema was also reduced by genistein treatment, showing alleviating effects of genistein at the pathological level. TUNEL staining also showed reduced apoptosis in rats treated with genistein. Genistein also inhibited Nlrp3/caspase-1 signalling, unveiling the effects of genistein in altering molecular pathways in brains with TBI.
Conclusion:
Genistein alleviates anxiety-like behaviours in TBI rats, which may be mediated via inhibiting Nlrp/caspase-1 signalling pathway.
Mood disorders are characterized by great heterogeneity in clinical manifestation. Uncovering such heterogeneity using neuroimaging-based individual biomarkers, clinical behaviors, and genetic risks, might contribute to elucidating the etiology of these diseases and support precision medicine.
Methods
We recruited 174 drug-naïve and drug-free patients with major depressive disorder and bipolar disorder, as well as 404 healthy controls. T1 MRI imaging data, clinical symptoms, and neurocognitive assessments, and genetics were obtained and analyzed. We applied regional gray matter volumes (GMV) and quantile normative modeling to create maturation curves, and then calculated individual deviations to identify subtypes within the patients using hierarchical clustering. We compared the between-subtype differences in GMV deviations, clinical behaviors, cell-specific transcriptomic associations, and polygenic risk scores. We also validated the GMV deviations based subtyping analysis in a replication cohort.
Results
Two subtypes emerged: subtype 1, characterized by increased GMV deviations in the frontal cortex, cognitive impairment, a higher genetic risk for Alzheimer's disease, and transcriptionally associated with Alzheimer's disease pathways, oligodendrocytes, and endothelial cells; and subtype 2, displaying globally decreased GMV deviations, more severe depressive symptoms, increased genetic vulnerability to major depressive disorder and transcriptionally related to microglia and inhibitory neurons. The distinct patterns of GMV deviations in the frontal, cingulate, and primary motor cortices between subtypes were shown to be replicable.
Conclusions
Our current results provide vital links between MRI-derived phenotypes, spatial transcriptome, genetic vulnerability, and clinical manifestation, and uncover the heterogeneity of mood disorders in biological and behavioral terms.
Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurodevelopmental disorder defined by characteristic behavioral and cognitive features. Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder. The full spectrum of ADHD-related variation of brain dynamics and its association with behavioral and cognitive features remain to be established.
Methods
We sought to identify patterns of brain dynamics linked to specific behavioral and cognitive dimensions using sparse canonical correlation analysis across a cohort of children with and without ADHD (122 children in total, 63 with ADHD). Then, using mediation analysis, we tested the hypothesis that cognitive deficits mediate the relationship between brain dynamics and ADHD-associated behaviors.
Results
We identified four distinct patterns of dFC, each corresponding to a specific dimension of behavioral or cognitive function (r = 0.811–0.879). Specifically, the inattention/hyperactivity dimension was positively associated with dFC within the default mode network (DMN) and negatively associated with dFC between DMN and the sensorimotor network (SMN); the somatization dimension was positively associated with dFC within DMN and SMN; the inhibition and flexibility dimension and fluency and memory dimensions were both positively associated with dFC within DMN and between DMN and SMN, and negatively associated with dFC between DMN and the fronto-parietal network. Furthermore, we observed that cognitive functions of inhibition and flexibility mediated the relationship between brain dynamics and behavioral manifestations of inattention and hyperactivity.
Conclusions
These findings document the importance of distinct patterns of dynamic functional brain activity for different cardinal behavioral and cognitive features related to ADHD.
How do subnational agents exercise policy discretion in the social welfare sphere? To what extent do they do so as a result of various bureaucratic and fiscal incentives? The literature has documented several explanatory frameworks in the context of China that predominantly focus on the realm of developmental policies. Owing to the salient characteristics of the social policy arena, local adaptation of centrally designed policies may operate on distinctive logics. This study synthesizes the recent scholarship on subnational social policymaking and explains the significant interregional disparities in China's de facto urban poverty line – the eligibility standard of the urban minimum livelihood guarantee scheme, or dibao. Five research hypotheses are formulated for empirical examination: fiscal power effect, population effect, fiscal dependency effect, province effect and neighbour effect. Quantitative analysis of provincial-level panel data largely endorses the hypotheses. The remarkable subnational variations in dibao standards are explained by a salient constellation of fiscal and political factors that are embedded within the country's complex intergovernmental relations and fiscal arrangements. Both a race-to-the-top and a race-to-the-bottom may be fostered by distinctive mechanisms. The unique role of provincial governments as intermediary agents within China's political apparatus is illuminated in the social policy arena.
Emerging functional imaging studies suggest that schizophrenia is associated with aberrant spatiotemporal interaction which may result in aberrant global and local dynamic properties.
Methods
We investigated the dynamic functional connectivity (FC) by using instantaneous phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in schizophrenia. Based on resting-state functional magnetic resonance imaging, two independent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ) and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase differences and instantaneous coupling matrices were firstly calculated at all time points by extracting instantaneous parameters. Global [global synchrony and intertemporal closeness (ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were compared between two groups. Support vector machine (SVM) was used to estimate the ability to discriminate two groups by using all aberrant features.
Results
We found SZ had lower global synchrony and ITC than HCs on both datasets. Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic features.
Conclusions
SZ has worse overall spatiotemporal stability and extensive FC subnetwork lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism of schizophrenia, providing insight into time-variation properties of patients with other mental illnesses.
The relationship between dietary nut intake and hyperuricemia risk remains unclear. The aim of this study was to investigate the relationship between different nut intake and hyperuricemia risk with a cross-sectional study.
Design:
A semi-quantitative FFQ was adopted to collect dietary information. Biochemical and anthropometric parameters were measured by standard methods. Multivariate-adjusted logistic regression models were implemented to analyse the relationship between individual nut intake and hyperuricemia risk.
Setting:
Qingdao University in Shandong Province, China.
Participants:
During 2018–2019, a total of 14 056 undergraduates (6862 males and 7194 females) aged 15–25 years participated in the study.
Results:
After adjusting for multiple confounding factors, compared with the lowest quartile, the highest quartile intakes of pine nut (95 % CI (0·51, 0·98)) was significantly associated with 29 % reduction in hyperuricemia risk, the highest quartile intake of walnut (OR = 0·78; 95 % CI (0·58, 1·05)) was marginally negatively associated with hyperuricemia risk.
Conclusions:
The present study showed that the relationships between intakes of different nuts and hyperuricemia risk were different. Increased dietary intakes of walnut and pine nut are negatively associated with the hyperuricemia.
Fruit intake may influence gestational diabetes mellitus (GDM) risk. However, prospective evidence remains controversial and limited. The current study aimed to investigate whether total fruit and specific fruit intake influence GDM risk.
Design:
A prospective cohort study was conducted. Dietary information was collected by a 3-d 24-h dietary recall. All participants underwent a standard 75-g oral glucose tolerance test at 24–28 gestational weeks. Log-binomial models were used to estimate the association between fruit intake and GDM risk, and the results are presented as relative risks (RR) and 95 % CI.
Setting:
Southwest China.
Participants:
Totally, 1453 healthy pregnant women in 2017.
Results:
Total fruit intake was not associated with lower GDM risk (RR of 1·03 (95 % CI 0·83, 1·27) (Ptrend = 0·789)). The RR of GDM risk was 0·73 for the highest anthocyanin-rich fruit intake quartile compared with the lowest quartile (95 % CI 0·56, 0·93; Ptrend = 0·015). A higher grape intake had a linear inverse association with GDM risk (Q4 v. Q1: RR = 0·65; 95 % CI 0·43, 0·98; Ptrend = 0·044), and after further adjustment for anthocyanin intake, the inverse association tended to be non-linear (Q4 v. Q1: RR = 0·65; 95 % CI 0·44, 0·98; Ptrend = 0·079). However, we did not find an association between glycaemic index-grouped fruit, glycaemic load-grouped fruit or other fruit subtype intake and GDM risk.
Conclusions:
In conclusion, specific fruit intake (particularly anthocyanin-rich fruit and grapes) but not total fruit intake was inversely associated with GDM risk.
We present a quasi-incompressible Navier–Stokes–Cahn–Hilliard (q-NSCH) diffuse interface model for two-phase fluid flows with variable physical properties that maintains thermodynamic consistency. Then, we couple the diffuse domain method with this two-phase fluid model – yielding a new q-NSCH-DD model – to simulate the two-phase flows with moving contact lines in complex geometries. The original complex domain is extended to a larger regular domain, usually a cuboid, and the complex domain boundary is replaced by an interfacial region with finite thickness. A phase-field function is introduced to approximate the characteristic function of the original domain of interest. The original fluid model, q-NSCH, is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the solid surface. We show that the q-NSCH-DD system converges to the q-NSCH system asymptotically as the thickness of the diffuse domain interface introduced by the phase-field function shrinks to zero ($\epsilon \rightarrow 0$) with $\mathcal {O}(\epsilon )$. Our analytic results are confirmed numerically by measuring the errors in both $L^{2}$ and $L^{\infty }$ norms. In addition, we show that the q-NSCH-DD system not only allows the contact line to move on curved boundaries, but also makes the fluid–fluid interface intersect the solid object at an angle that is consistent with the prescribed contact angle.
Battery-casing sealing is the key factor for secure travel of new energy vehicles. We constructed a relatively accurate mechanical-simulation model by selecting a constitutive model, analyzing the influence of thermal elongation, verifying the grid-independence and comparing numerically by the pressure-measurement film on the basis of studying the physical performance of a certain type of sealing material that had been used in battery-casings after aging. Based on a porous-media model and combined with changes of macroscopic and microscopic contact characteristics of materials at different times after aging, the evolution rule of sealing performance with time was analyzed quantitatively by calculating the leakage. By analyzing the structure of circular arc bulge on the surface of sealing material, the radius of circular arc bulge with better sealing performance was obtained, which could reduce the leakage of sealing structure during the material’s lifecycle.
Teenagers are important carriers of Neisseria meningitidis, which is a leading cause of invasive meningococcal disease. In China, the carriage rate and risk factors among teenagers are unclear. The present study presents a retrospective analysis of epidemiological data for N. meningitidis carriage from 2013 to 2017 in Suizhou city, China. The carriage rates were 3.26%, 2.22%, 3.33%, 3.53% and 9.88% for 2013, 2014, 2015, 2016 and 2017, respectively. From 2014 to 2017, the carriage rate in the 15- to 19-year-old age group (teenagers) was the highest and significantly higher than that in remain age groups. Subsequently, a larger scale survey (December 2017) for carriage rate and relative risk factors (population density, time spent in the classroom, gender and antibiotics use) were investigated on the teenagers (15- to 19-year-old age) at the same school. The carriage rate was still high at 33.48% (223/663) and varied greatly from 6.56% to 52.94% in a different class. Population density of the classroom was found to be a significant risk factor for carriage, and 1.4 persons/m2 is recommended as the maximum classroom density. Further, higher male gender ratio and more time spent in the classroom were also significantly associated with higher carriage. Finally, antibiotic use was associated with a significantly lower carriage rate. All the results imply that attention should be paid to the teenagers and various measures can be taken to reduce the N. meningitidis carriage, to prevent and control the outbreak of IMD.
Aeolian dust deposits from continent and ocean have been extensively investigated to reflect past changes in source aridity and atmospheric circulations. Aeolian flux (AF) as a quantitative dust proxy has been widely used in both palaeoenvironmental reconstruction and numerical simulation. However, available AF data on the Chinese Loess Plateau (CLP) is too limited to assess the temporal–spatial variations at glacial–interglacial timescales, and therefore cannot be used as robust input parameters in palaeoclimate models. Here we investigate eight loess profiles along two N–S-aligned transects on the CLP to quantitatively estimate the AF variations over the last glacial–interglacial cycle. We first establish a refined chronological framework based on optically stimulated luminescence chronology and pedostratigraphic correlation. AF was then estimated by multiplying the sedimentation rate and bulk density. The results show that the AF increases from 2–18 g cm−2 ka−1 in the southeastern CLP to 14–105 g cm−2 ka−1 in the northwestern CLP. At glacial–interglacial scales, the AF varies from 2–20 g cm−2 ka−1 during the last interglacial to 8–105 g cm−2 ka−1 in the last glaciation. Due to more spatial coverage and better age constraints, our AF data can be used to refine other AF datasets and to improve the proxy–model comparison.
This study examines the relationship between filial piety (adult children's filial behaviours and attitudes as well as elderly mothers’ overall evaluation of children's filial piety) and elderly mothers’ reports of intergenerational ambivalence (positive feelings, negative feelings and combined ambivalence) in rural China. We analysed the data from a survey in 2016 covering 2,203 adult children and 802 elderly mothers in Sichuan Province using a two-level mixed-effects modelling analysis. The results indicate that most components of filial piety are associated with mothers’ ambivalence, in that less ambivalence was reported by mothers when their adult children provided more emotional support to, had less conflict with and were evaluated as more filial by their mothers. Interestingly, mothers demonstrated greater positive feelings when their children were more filial in behaviour and attitude, but they also reported greater negative feelings and ambivalence when their children were more obedient, implying that absolute obedience to elderly parents might no longer be accepted by people. These findings may provide further understanding about the correlation between the culture of filial piety and intergenerational relationships in rural China.
A compact high-isolation power divider with bandpass response and high-frequency selectivity is presented in this letter. Two dual-mode resonators are used to realize filtering response. The circuit size of the proposed power divider can be reduced by using dual-mode capacitance loaded square meander loop resonators. Due to capacitive load, the resonator can exhibit slow-wave characteristics, which can be utilized to suppress harmonics and reduce size. The simulated and measured results show reasonable agreement.
The Nihewan Basin is a key region for studying the Palaeolithic archaeology of East Asia. However, because of the lack of suitable dating methods and representative lithic technologies in this region, the ‘Middle Palaeolithic’ sites in this basin have been designated based mainly on stratigraphic correlation, which may be unreliable. In this study, three Palaeolithic sites, Motianling, Queergou and Banjingzi, which have been assigned previously to the ‘Middle Palaeolithic’, are dated based on luminescence dating of K-feldspar grains. Our results show that the cultural layers at Motianling, Queergou and Banjingzi have ages of 315 ± 13, 268 ± 13 and 86 ± 4 ka (corresponding to Marine Isotope Stages 9, 8 and 5), respectively, suggesting that Motianling and Queergou should be assigned to the Lower Palaeolithic, while the age of Banjingzi is consistent with a Middle Palaeolithic attribution. Our results suggest that reassessing the age of ‘Middle Palaeolithic’ sites in the Nihewan Basin, and elsewhere in North China, is crucial for understanding the presence or absence of the Middle Palaeolithic phase in China. Our dating results also indicate that the Sanggan River developed sometime between about 270 and 86 ka ago.
Tin oxide (SnO2) hollow spheres modified with titanium dioxide (TiO2) nanowires (NWs) synthesized by sequential hydrothermal reactions were investigated as photoanodes for dye-sensitized solar cells. Not only does the hydrothermal treatment form numerous short TiO2 NWs on the surface of SnO2 spheres, but also passivates the surface of SnO2. Consequently, the specific surface area of the photoanode and dye loading are almost doubled, at the same time the surface defects and charge recombination are both appreciably reduced. As a result, the short-circuit photocurrent density and open-circuit photovoltage both greatly increased. The power conversion efficiency of the solar cells increases from 0.4% to 2.9%.
Interleukin (IL)-13-associated signal pathway plays an important role in schistosomiasis hepatic fibrosis. In this study we tried to investigate the effects of corilagin to ameliorate schistosomiasis hepatic fibrosis through regulating IL-13-associated signal pathway in vitro and in vivo. Cellular model was set up with hepatic stellate cells-T6 cells stimulated by rIL-13 and male Balb/c mice were infected with Schistosoma japonicum cercariaeas as animal model. Liver histological changes were observed with haematoxylin and eosin staining. Masson staining was employed to observe the change of egg granulomas. Expression of Col (collagen) and Col III were examined with Immunohistochemistry. Western bolt was employed to detect the JAK-1 and IL13Rα1 proteins. The mRNA expression of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were tested by quantitative polymerase chain reaction. As a result, less inflammatory changes were found in all corilagin groups compared with model group and praziquantel group. The mRNA levels of Col I, Col III, IL-13, JAK-1 and IL13Rα1 were significantly decreased after corilagin intervention (P < 0·01). JAK-1 and IL-13Rα1 protein levels were also greatly decreased in the corilagin groups (P < 0·01). In conclusion, corilagin could ameliorate schistosomiasis hepatic fibrosis by down-regulating the expression of IL-13 and signal molecules in IL-13 pathway.
Very high cycle bending fatigue behaviors of FV520B steel under fretting wear were studied by the ultrasonic fatigue technique. The specimen system for ultrasonic bending testing was designed and the stress distribution of fatigue specimen was obtained by finite element method. The microstructure of FV520B steel was characterized by means of optical microscope, transmission electron microscope, and energy-dispersive spectroscope. The P–S–N curve was drawn based on fatigue data. The micromorphology characteristics of fretting wear surface and fracture surface for fatigue specimen were observed. The results indicate that the microstructure of FV520B steel is mainly composed of lath martensite, ferrite, and precipitation particles, with some randomly distributed internal inclusions. The P–S–N curve shows that there exists no “conventional fatigue limit” and the fatigue life decreases continuously with the increase of applied stress Smax. Most of fatigue cracks are observed on fractography and initiate from the overlap region of fretting wear zone and stress concentration zone. The fracture failure for tested specimen is ascribed to fretting wear and bending vibration fatigue.