We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bipolar disorder is highly prevalent and consists of biphasic recurrent mood episodes of mania and depression, which translate into altered mood, sleep and activity alongside their physiological expressions.
Aims
The IdenTifying dIgital bioMarkers of illnEss activity and treatment response in BipolAr diSordEr with a novel wearable device (TIMEBASE) project aims to identify digital biomarkers of illness activity and treatment response in bipolar disorder.
Method
We designed a longitudinal observational study including 84 individuals. Group A comprises people with acute episode of mania (n = 12), depression (n = 12 with bipolar disorder and n = 12 with major depressive disorder (MDD)) and bipolar disorder with mixed features (n = 12). Physiological data will be recorded during 48 h with a research-grade wearable (Empatica E4) across four consecutive time points (acute, response, remission and episode recovery). Group B comprises 12 people with euthymic bipolar disorder and 12 with MDD, and group C comprises 12 healthy controls who will be recorded cross-sectionally. Psychopathological symptoms, disease severity, functioning and physical activity will be assessed with standardised psychometric scales. Physiological data will include acceleration, temperature, blood volume pulse, heart rate and electrodermal activity. Machine learning models will be developed to link physiological data to illness activity and treatment response. Generalisation performance will be tested in data from unseen patients.
Results
Recruitment is ongoing.
Conclusions
This project should contribute to understanding the pathophysiology of affective disorders. The potential digital biomarkers of illness activity and treatment response in bipolar disorder could be implemented in a real-world clinical setting for clinical monitoring and identification of prodromal symptoms. This would allow early intervention and prevention of affective relapses, as well as personalisation of treatment.
Converging evidence suggests that a subgroup of bipolar disorder (BD) with an early age at onset (AAO) may develop from aberrant neurodevelopment. However, the definition of early AAO remains unprecise. We thus tested which age cut-off for early AAO best corresponds to distinguishable neurodevelopmental pathways.
Methods
We analyzed data from the FondaMental Advanced Center of Expertise-Bipolar Disorder cohort, a naturalistic sample of 4421 patients. First, a supervised learning framework was applied in binary classification experiments using neurodevelopmental history to predict early AAO, defined either with Gaussian mixture models (GMM) clustering or with each of the different cut-offs in the range 14 to 25 years. Second, an unsupervised learning approach was used to find clusters based on neurodevelopmental factors and to examine the overlap between such data-driven groups and definitions of early AAO used for supervised learning.
Results
A young cut-off, i.e. 14 up to 16 years, induced higher separability [mean nested cross-validation test AUROC = 0.7327 (± 0.0169) for ⩽16 years]. Predictive performance deteriorated increasing the cut-off or setting early AAO with GMM. Similarly, defining early AAO below 17 years was associated with a higher degree of overlap with data-driven clusters (Normalized Mutual Information = 0.41 for ⩽17 years) relatively to other definitions.
Conclusions
Early AAO best captures distinctive neurodevelopmental patterns when defined as ⩽17 years. GMM-based definition of early AAO falls short of mapping to highly distinguishable neurodevelopmental pathways. These results should be used to improve patients' stratification in future studies of BD pathophysiology and biomarkers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.