We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work is part of the interlaboratory collaboration to study the stability of organic solar cells containing PCDTBT polymer as a donor material. The varieties of the OPV devices with different device architectures, electrode materials, encapsulation, and device dimensions were prepared by seven research laboratories. Sets of identical devices were aged according to four different protocols: shelf lifetime, laboratory weathering under simulated illumination at ambient temperature, laboratory weathering under simulated illumination, and elevated temperature (65 °C) and daylight outdoor weathering under sunlight. The results generated in this study allow us to outline several general conclusions related to PCDTBT-based bulk heterojunction (BHJ) solar cells. The results herein reported can be considered as practical guidance for the realization of stabilization approaches in BHJ solar cells containing PCDTBT.
Microstructural and morphological features of the layers forming integrated PTB7/PC71BM organic solar cells with Ca/Al cathode are studied. The effects of vacuum treatment on properties and durability were addressed using complementary approaches: time-resolved experiments revealing the structural evolution of the active layers under illumination were conducted combining the in situ energy dispersive X-ray diffraction (EDXD) technique with atomic force microscopy (AFM); space-resolved characterization of the integrated devices was possible via high resolution X-ray diffraction, using a nano-focused synchrotron radiation X-ray beam to discriminate the device components. Active layers surface morphology is stable under illumination and PC71BM structural properties remain unaltered. PTB7 undergoes crystallinity depletion, mainly at the active layer/cathode interface. This effect is actually inhibited in the device submitted to vacuum treatment, proving that this procedure induces stabilization at the cathode’s buried interface, as verified by fourier transform infrared (FTIR) spectroscopy. Importantly, the protective role of the vacuum treatment results in a significant photovoltaic durability enhancement.
Strong hysteresis in the I-V characteristics of organic thin film transistors are a severe obstacle for the implementation of large circuits. It therefore is a key success factor for the optimization and widespread application of organic electronics to understand the underlying principles. We report the fabrication of two types of pentacene transistors with either polyvinyl alcohol (PVA) or SiO2 as gate dielectric. These devices respond to transient measurement sweeps with a fundamentally different I-V hysteresis. A self-contained model is presented, which associates this behavior with the influence of traps at the SiO2/pentacene interface and polarization in the PVA layer. Simulations employing the commercial drift-diffusion tool SENTAURUSTM are performed to verify our models.
We performed combined thermal and ultraviolet nanoimprint lithography (TUV-NIL) using a recently developed nanoimprint polymer (mr-NIL 6000 from Micro Resist technology GmbH) and achieved an imprinted feature size of 50 nm. We used commercially available 2-inch-diameter transparent quartz molds (NIL Technology, Denmark and Obducat, Sweden) comprising 150 nm to 190 nm-deep features of various shapes and aspect ratios with lateral dimensions ranging between 50 nm and 300 nm. The imprint polymer was spun onto a silicon substrate, covered with an oxide layer. After the TUV-NIL step, residual polymer layers at the bottom of the imprinted features were removed by oxygen plasma etching. Imprinted patterns were then transferred into the silicon oxide layer underneath by reactive ion etching (RIE). In a final step the residual polymer was stripped off the silicon oxide surface in an oxygen asher. All imprinted features as well as the corresponding pattern transfer results showed good surface and sidewall characteristics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.