We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Pliensbachian–Toarcian succession of North Yorkshire provides a global reference for the interval incorporating the Toarcian Oceanic Anoxic Event (T-OAE, ∼183 Ma). Major and trace element, carbon stable-isotope (δ13Corg) and total organic carbon (TOC) data for the Dove’s Nest core, drilled close to the classic outcrop sections of the Yorkshire coast, demonstrate geochemical, mineralogical and grain-size trends linked to sea level and climate change in the Cleveland Basin. High-resolution correlation between the core and outcrop enables the integration of data to generate a comprehensive chemostratigraphic record. Palaeoredox proxies (Mo, U, V, TOC/P, DOP and Fe speciation) show a progressive shift from oxic bottom waters in the late Pliensbachian through dysoxic–anoxic conditions in the earliest Toarcian to euxinia during the T-OAE. Anoxia–dysoxia persisted into the middle Toarcian. Elemental and isotope data (Re, Re/Mo, δ34SCAS, δ98Mo and ε205Tl) from the coastal sections evidence global expansion of anoxic and euxinic seafloor area driving drawdown of redox-sensitive metals and sulfate from seawater leading to severe depletion in early Toarcian ocean water. The record of anoxia–euxinia in the Cleveland Basin largely reflects global-scale changes in ocean oxygenation, although metal depletion was temporarily enhanced by periods of local basin restriction. Osmium and Sr isotopes demonstrate a pulse of accelerated weathering accompanying the early Toarcian hyperthermal, coincident with the T-OAE. The combined core and outcrop records evidence local and global environmental change accompanying one of the largest perturbations in the global carbon cycle during the last 200 Ma and a period of major biotic turnover.
Social anxiety (SA), a prevalent comorbid condition in psychotic disorders with a negative impact on functioning, requires adequate intervention relatively early. Using a randomized controlled trial, we tested the efficacy of a group cognitive-behavioral therapy intervention for SA (CBT-SA) that we developed for youth who experienced the first episode of psychosis (FEP). For our primary outcome, we hypothesized that compared to the active control of group cognitive remediation (CR), the CBT-SA group would show a reduction in SA that would be maintained at 3- and 6-month follow-ups. For secondary outcomes, it was hypothesized that the CBT-SA group would show a reduction of positive and negative symptoms and improvements in recovery and functioning.
Method
Ninety-six patients with an FEP and SA, recruited from five different FEP programs in the Montreal area, were randomized to 13 weekly group sessions of either CBT-SA or CR intervention.
Results
Linear mixed models revealed that multiple measures of SA significantly reduced over time, but with no significant group differences. Positive and negative symptoms, as well as functioning improved over time, with negative symptoms and functioning exhibiting a greater reduction in the CBT-SA group.
Conclusions
While SA decreased over time with both interventions, a positive effect of the CBT-SA intervention on measures of negative symptoms, functioning, and self-reported recovery at follow-up suggests that our intervention had a positive effect that extended beyond symptoms specific to SA.
The combination of advances in knowledge, technology, changes in consumer preference and low cost of manufacturing is accelerating the next technology revolution in crop, livestock and fish production systems. This will have major implications for how, where and by whom food will be produced in the future. This next technology revolution could benefit the producer through substantial improvements in resource use and profitability, but also the environment through reduced externalities. The consumer will ultimately benefit through more nutritious, safe and affordable food diversity, which in turn will also contribute to the acceleration of the next technology. It will create new opportunities in achieving progress towards many of the Sustainable Development Goals, but it will require early recognition of trends and impact, public research and policy guidance to avoid negative trade-offs. Unfortunately, the quantitative predictability of future impacts will remain low and uncertain, while new chocks with unexpected consequences will continue to interrupt current and future outcomes. However, there is a continuing need for improving the predictability of shocks to future food systems especially for ex-ante assessment for policy and planning.
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from
$z = 0.35$
to 3; and a deep, high-redshift HI IM survey over 100 deg2 from
$z = 3$
to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to
$z \sim 3$
with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to
$z = 6$
. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.
Commentary on the introduction of the Australian Curriculum (AC) has reflected a tension for educators of students with disabilities (SWD) between in-principle support for a curriculum that is inclusive of all students and the challenge of translating a general framework into relevant, individualised learning experiences appropriate for all SWD. In this paper, we report on findings from the second part of a national online survey in which we explored the perceptions and practices of 151 educators of SWD in specialist settings (special schools, disability units co-located at mainstream schools, special classes within mainstream schools) in relation to the AC. Specifically, these findings relate to the professional learning (PL) experiences and perceived needs of educators of SWD related to the AC and their advice to policymakers about the AC for SWD. Consistent with previous research, participants expressed a preference for PL experiences delivered on site, facilitated by content experts over extended periods, with opportunities for demonstration and targeted feedback, and in the context of collegial learning communities. In addition, participants raised concerns about the extent to which the AC is fully inclusive of all SWD. Implications for policy, practice, and future research are discussed.
Despite aspirations to be a world-class national curriculum, the Australian Curriculum (AC) has been criticised as ‘manifestly deficient’ (Australian Government Department of Education and Training, 2014 p. 5) as an inclusive curriculum, failing to meet the needs of all students with disabilities (SWD) and their teachers. There is a need for research into the daily attempts of educators to navigate the tension between a ‘top-down’ system-wide curriculum and a ‘bottom-up’ regard for individual student needs, with a view to informing both policy and practice. This article is the first of two research papers in which we report the findings from a national online Research in Special Education (RISE) Australian Curriculum Survey of special educators in special schools, classes, and units regarding their experience using the AC to plan for and teach SWD. Survey results indicated (a) inconsistent use of the AC as the primary basis for developing learning objectives and designing learning experiences, (b) infrequent use of the achievement standards to support assessment and reporting, and (c) considerable supplementation of the AC from other resources when educating SWD. Overall, participants expressed a lack of confidence in translating the AC framework into a meaningful curriculum for SWD. Implications for policy, practice, and future research are discussed.
Archaeological fieldwork preceding housing development revealed a Mesolithic site in a primary context. A central hearth was evident from a cluster of calcined flint and bone, the latter producing a modelled date for the start of occupation at 8220–7840 cal bc and ending at 7960–7530 cal bc (95% probability). The principal activity was the knapping of bladelets, the blanks for microlith production. Impact-damaged microliths indicated the re-tooling of hunting weaponry, while microwear analysis of other tools demonstrated hide working and butchery activity at the site. The lithics can be classified as a Honey Hill assemblage type on the basis of distinctive leaf-shaped microlithic points with inverse basal retouch.
Such assemblages have a known concentration in central England and are thought to be temporally intermediate between the conventional British Early and Late Mesolithic periods. The lithic assemblage is compared to other Honey Hill type and related Horsham type assemblages from south-eastern England. Both assemblage types are termed Middle Mesolithic and may be seen as part of wider developments in the late Preboreal and Boreal periods of north-west Europe. Rapid climatic warming at this time saw the northward expansion of deciduous woodland into north-west Europe. Emerging new ecosystems presented changes in resource patterns and the Middle Mesolithic lithic typo-technological developments reflect novel foraging strategies as adaptations to the new opportunities of Boreal forest conditions. While Honey Hill-type assemblages are seen as part of such wider processes their distinctive typological signature attests to autochthonous, regional developments of human groups infilling the landscape. Such cultural insularity may reflect changing social boundaries with reduction in mobility range and physical isolation caused by rising sea level and the creation of the British archipelago.
Introduction/Innovation Concept: Inter-professional education (IPE) involves ‘occasions when two or more professions learn with, from and about each other to improve collaboration and the quality of care’. Current literature has found IPE to increase knowledge and skills, improve attitudes towards other professions, and to promote superior clinical outcomes. Health Canada has collaborated to form accreditation standards to support IPE in Canadian medical schools. The proposed educational innovation termed the ‘nursing shift,’ based out of Kelowna General Hospital’s Department of Emergency Medicine, in partnership with UBC’s Southern and Island Medical Programs, endeavors to enhance IPE in our institution. Methods: This nursing shift was first trialed with third year medical students as a pilot rotation beginning in March of 2016. Based on overwhelmingly positive results obtained from narrative feedback, a formal rotation with the same structure will be implemented in the form of a prospective cohort study with 48 medical students from two UBC sites. One group will attend a nursing shift, while the other group will complete the standard emergency medicine rotation without this nursing shift. Impact will be measured using a mixed-method analysis where students will be asked to provide both quantitative feedback in the form of a questionnaire, and qualitative feedback in the form of a narrative response. The primary outcome will be quantitative score differences between the groups of students, and the secondary outcome will be qualitative results for those who completed the nursing shift. Curriculum, Tool, or Material: The innovative educational concept consists of an 8-hour nursing shift where medical students spend the first 4 hours at triage with a nurse learning about patient intake. The remaining 4 hours are in the emergency department where students collaborate with a nurse on a number of tasks including preparing and administering medications, starting intravenous lines, and inserting Foley catheters. Conclusion: Healthcare systems are shifting to a more collaborative team oriented approach, and IPE has been shown to prepare students for this changing workplace. We seek to understand third year medical students’ experience of the nursing shift, and to evaluate any changes in attitudes towards inter-professional collaboration after engaging in this intervention. Evaluation of this novel implementation will enable us to assess and optimize the nursing shift, and if it is well received, encourage widespread adoption.
As part of a program to study surge-type glaciers, a radar-depth survey, using a frequency of 620 MHz, has been made of Trapridge Glacier, Yukon Territory. Soundings were taken at 26 locations on the glacier surface and a maximum ice thickness of 143 m was measured. A rapid change in surface slope in the lower ablation region marks the boundary between active and stagnant ice and is suggestive of an “ice dam” or the water “collection zone” postulated by Robin and Weertman for surging glaciers.
We provide an introduction to enumerating and constructing invariants of group representations via character methods. The problem is contextualized via two case studies, arising from our recent work: entanglement invariants for characterizing the structure of state spaces for composite quantum systems; and Markov invariants, a robust alternative to parameter-estimation intensive methods of statistical inference in molecular phylogenetics.
The UK has seen a significant transition from Defined Benefit (“DB”) to Defined Contribution (“DC”) for occupational pension saving. The planned automatic enrolment program starting in 2012 is expected to increase the use of DC. The main features of DC are that investment risk falls onto the individual during the pre-retirement phase and that there are no guarantees as to investment returns or the level of pension. In July 2012, Steve Webb, the Pensions Minister, challenged industry to think hard about meeting the need for more certainty about pension savings in DC plans and to consider providing an affordable ‘Money Safe’ guarantee where the member would get back at least the nominal value of their contributions (individual, employer and tax relief). This paper explores whether this is viable for the mass market.
Objective: The effects of contingency management to induce physical activity levels were examined in seven non-obese physically inactive undergraduate students by providing monetary payments using a multiple baseline, changing-criterion procedure. Methods: Participants attended a baseline phase, a subsequent intervention phase consisting of three exercise sessions per week for 4 weeks, and a follow-up session 2 weeks post intervention. A total of $145 was available for attendance and exercise contingency payments. Results: Results indicate that all participants significantly increased exercise during intervention from inactivity at baseline to exercising three 30-minute sessions per week. Participants maintained some gains during follow-up. Limitations: The study employed a small and homogenous sample size and required participants to exercise in a lab setting thus limiting external validity. Conclusions: These findings suggest that incentive-based interventions are an effective and viable means for inducing exercise.
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
EMU is a wide-field radio continuum survey planned for the new Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The primary goal of EMU is to make a deep (rms ∼ 10 μJy/beam) radio continuum survey of the entire Southern sky at 1.3 GHz, extending as far North as +30° declination, with a resolution of 10 arcsec. EMU is expected to detect and catalogue about 70 million galaxies, including typical star-forming galaxies up to z ∼ 1, powerful starbursts to even greater redshifts, and active galactic nuclei to the edge of the visible Universe. It will undoubtedly discover new classes of object. This paper defines the science goals and parameters of the survey, and describes the development of techniques necessary to maximise the science return from EMU.
This volume is a synthesis of current knowledge about the growth, development and functioning of plant canopies. The term canopy is taken to include not only the upper surface of woodland, as in the original definition, but also analogous surfaces of other plant communities. Although much research has been carried out on single leaves, canopies are much more than just a collection of individual leaves, and so exhibit properties of their own. It can be argued that it is primarily at the canopy rather than the leaf level that solutions to many practical problems about the growth of plants in the field can be found. In this volume, canopy properties are considered in terms of the processes, such as transpiration and photosynthesis, by which the canopy and its environment interact. Topics discussed include the meaning of canopy structure, interception of solar radiation, exchange processes, nitrogen nutrition, leaf demography and heliotropism. Key principles are illustrated by examples from a wide range of plant community types and geographical locations. This book will be of interest to advanced students and research workers in agriculture, botany, crop sciences, ecology and forestry.
A new model is presented that relates the numbers of bolters in sugar-beet crops to an intensity of vernalization calculated as the accumulated number of hours between sowing and the end of June that temperatures were between 0 and 13°C, with each temperature within this range differentially weighted for its vernalizing effect. The model allows varieties to be characterized in terms of a threshold number of vernalizing hours needed to induce bolting (the vernalization requirement) and the increase in the proportion of bolted plants with each additional 10 vernalizing hours accumulated above this vernalizing threshold (the bolting sensitivity). When parameterized for variety, the model allows the level of bolting to be predicted for crops sown on specific dates in particular locations.
Data from variety-assessment trials done at a wide range of locations throughout the main UK sugar-beet growing areas between 1973 and 2006, and from early sown bolting trials done at a few sites between 2000 and 2008, were used to define specific aspects of the model. These included the range and weightings of vernalizing temperatures, the period during which vernalization occurs, and the temperatures likely to cause plants to become devernalized.
The vernalization-intensity bolting model was parameterized and validated using separate subsets of the UK variety-assessment trial data. It was shown to be more discriminating and robust than an existing ‘cool-day’ model, which relates bolting to the number of days from sowing in which the maximum air temperature was below 12°C. Examples are given of the use of the new model to assess the bolting risk associated with early sowing in different regions of the UK, to interpret recent patterns of bolting (especially the large numbers of bolters seen in some commercial crops in 2008), and its potential use as an advisory tool.