We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper investigates the stability of a fully parabolic–parabolic-fluid (PP-fluid) system of the Keller–Segel–Navier–Stokes type in a bounded planar domain under the natural volume-filling hypothesis. In the limit of fast signal diffusion, we first show that the global classical solutions of the PP-fluid system will converge to the solution of the corresponding parabolic–elliptic-fluid (PE-fluid) system. As a by-product, we obtain the global well-posedness of the PE-fluid system for general large initial data. We also establish some new exponential time decay estimates for suitable small initial cell mass, which in particular ensure an improvement of convergence rate on time. To further explore the stability property, we carry out three numerical examples of different types: the nontrivial and trivial equilibriums, and the rotating aggregation. The simulation results illustrate the possibility to achieve the optimal convergence and show the vanishment of the deviation between the PP-fluid system and PE-fluid system for the equilibriums and the drastic fluctuation of error for the rotating solution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.