We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two-dimensional gaseous detonations near critical propagation state were studied numerically in a channel with stoichiometric H$_2$/air and H$_2$/O$_2$ mixtures. Detonation waves exhibit a mode-locking effect (MLE) in a single-headed mode regime. Increasing the channel width alters the strength and propagation period of the single transverse wave. This leads to MLE failure and the occurrence of the single-dual-headed critical mode, featuring the emergence of a new transverse wave. For a stoichiometric H$_2$/air mixture, generation of the new transverse wave is due to interactions between the detonation front and the local explosion wave originating from interactions between the transverse wave and unreacted gas pocket downstream. Whereas, for a stoichiometric H$_2$/O$_2$ mixture, a transverse wave interacting with the wall produces Mach reflection bifurcation, causing MLE failure and generation of the new transverse wave. Our results show that all transverse waves manifest as strong transverse wave (STW) structures, with most belonging to the second kind, and an acoustic coupling exists between the typical second kind of STW structure and the acoustic wave in the induction zone behind the Chapman–Jouguet detonation front. A high-pressure region close to the STW structure plays a crucial role in exploring the transverse dynamics of this structure. Shock polars with rational assumptions are adopted to predict flow states in this region. The roles of pivotal factors in influencing the flow states and wave structure are clarified, and characteristic pressure values derived adequately represent the STW structure’s transverse dynamic behaviours. Lastly, the relationship between the kinematics and kinds of STW structures is unveiled.
A method is proposed for identifying robot gravity and friction torques based on joint currents. The minimum gravity term parameters are obtained using the Modified Denavit–Hartenberg (MDH) parameters, and the dynamic equations are linearized. The robot’s friction torque is identified using the Stribeck friction model. Additionally, a zero-force drag algorithm is designed to address the issue of excessive start-up torque during dragging. A sinusoidal compensation algorithm is proposed to perform periodic friction compensation for each stationary joint, utilizing the identified maximum static friction torque. Experimental results show that when the robot operates at a uniform low speed, the theoretical current calculated based on the identified gravity and friction fits the actual current well, with a maximum root mean square error within 50 mA, confirming the accuracy of the identification results. The start-up torque compensation algorithm reduces the robot’s start-up torque by an average of $ 60.58\mathrm{\%}$, improving the compliance of the dragging process and demonstrating the effectiveness of the compensation algorithm.
Feed intake, a critical factor for dairy cows during the postpartum period, is intricately linked to the rumen microbiome. However, the specific roles of rumen metagenome and metabolome in modulating feed intake in postpartum dairy cows remain unclear. In the current study, 20 postpartum dairy cows were divided into low feed intake (n = 5) and high feed intake (HFI, n = 5) groups to investigate the role of ruminal microbial composition, function, and metabolism on feed intake using a combined approach of metagenomics and metabolomics. Our analysis revealed a significant enrichment of Bacteroides and Fibrobacter in HFI cows (p < 0.05), contributing to enhanced protein and energy metabolism. Metabolomic analysis disclosed that HFI cows exhibited a higher relative concentration of rumen metabolites, such as alpha-tocopheryl acetate (fold change = 9.2, p = 0.008), linoleic acid (fold change = 5.96, p = 0.007), and leucine (fold change = 4.14, p = 0.004). Spearman correlation analysis pinpointed a positive correlation between specific microbiota (Succinivibrionaceae and Prevotellaceae) and metabolites involved in amino acid and peptide metabolism, fatty acid metabolism, and conjugates. Furthermore, co-occurrence network analysis showed that the unclassified_f_Succinivibrionaceae, Succinatimonas, and Ruminobacte were significantly associated with dry matter intake-associated metabotypes, including rumen metabolites involved in fatty acids and conjugates, favonoids, and gycerophosphocholines. The feed intake variation explained by the rumen microbiome, functions, and metabolites were 29.63%, 27.30%, and 33.50%, respectively. These findings provide comprehensive insights into rumen metagenomics at different feed intake levels in postpartum dairy cows, potentially guiding strategies to manipulate the rumen microbiome for feed intake and production improvement.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.
The innovation value of open government data (OGD) drives firms to the participation in OGD-driven innovation. However, to fully excavate the innovation value of OGD for firms, it is essential to explore the factors and mechanisms that affect OGD-driven innovation capacity. On the basis of the technology–organization–environment (TOE) framework, a theoretical model affecting OGD-driven innovation capacity is proposed for analysis by partial least squares structural equation modeling with 236 sample data from China. The results indicate that top leaders’ support positively impacts on OGD-driven innovation capacity in firms. And we also prove that technical competence, organizational arrangement, and innovation support partially mediate the relationship between top leaders’ support and OGD-driven innovation capacity on the basis of the TOE framework. Consequently, the findings provide new research perspectives and practical guidance for promoting OGD-driven innovation capacity in firms.
Various magmatisms during the subduction-collision process are crucial to reveal the long-term tectonic evolution of the eastern Central Asian Orogenic Belt. In this paper, we present major and trace elements of whole-rock, zircon U-Pb dating and Hf isotope of the Shanmen pluton. Results imply that the Shanmen pluton consists of quartz diorite and mylonitic granite, with zircon U-Pb ages of 263.7–259.6 Ma. The studied quartz diorite contains high Sr/Y (51.19–90.87) and (La/Yb)N (7.82–13.62) ratios, and belongs to adakitic rocks. Coupled with the positive εHf(t) values of +5.71 to +12.8 with no obvious Eu anomaly, we propose that quartz diorite is the product of the interaction between different degrees of slab melt and the overlying mantle wedge. In contrast, the mylonitic granite has lower MgO (0.28 wt% – 0.47 wt%) contents and positive εHf(t) values of +7.79 to +10.15, indicating an affinity with I-type granite originated by partial melting of the intermediate-basic lower crust. The geochemical characteristics and lithological assemblages, along with the Permian magmatic rocks in the Changchun-Kaiyuan area displaying arc rocks affinity, propose their formation is related to the southward subduction of the Paleo-Asian Ocean (PAO). Based on this study and previous evidence, we lean towards adopting a middle-late Permian slab break-off model, wherein the PAO did not close until the late Permian.
Melting and calving of glaciers and ice caps in Antarctica and Greenland could potentially contribute significantly to global sea level rise. Updates to existing outlines that provide critical glacier baseline information in both regions could help in the analysis of particular changes in glacier parameters such as area and volume from time-series inventories. Here we synthesize previously established techniques and apply new multi-source datasets to update glacier outlines in selected test areas of Antarctica and Greenland, as well as to reduce uncertainties and errors during the mapping process. The workflow includes mapping glacier boundaries, subdividing glaciers by watersheds and assigning glacier attributes. Complicated glacier scenarios and updating challenges in polar regions are discussed and demonstrated by representative case studies. For the first time in Antarctica, we analyze the effect of terminus types on mapped glacier areas, and in Greenland we compare the differences with glacier mapping results using Landsat OLI and ETM+. With new data sources, the methods described in this study might help to create glacier outlines on a larger scale in Antarctica and Greenland. Although data sources can be substituted, the enormous amount of manual labor required to update glacier inventories remains a significant challenge.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
Social anxiety disorder is a psychological disorder that refers to excessive nervousness, fear, and fear of being judged or shamed by others in social situations. Although traditional psychotherapy methods are effective, their effectiveness is not good. Intangible cultural heritage elements cultural design uses traditional cultural elements to create unique products and experiences, which can provide a bridge for patients to communicate with others.
Subjects and Methods
100 patients with social anxiety disorder were randomly assigned to the experimental and control groups. The experimental group received the intangible cultural design intervention, while the control group received conventional psychotherapy. The mental health status of the subjects was assessed by Stanford Acute Stress Response Questionnaire (SASRQ) and 3-Minute Delirium Diagnosis Scale (3D-CAM) scale scores before and after the intervention.
Results
The results showed that the social anxiety of the experimental group was significantly reduced and the mental health status was significantly improved after the intervention, while the intervention effect of the control group was relatively limited. It shows that intangible cultural and creative design has a positive impact on the mental health of patients with social anxiety disorder.
Conclusions
Through the cultural and creative design of intangible cultural heritage elements, patients can reduce anxiety by creating and appreciating works. At the same time, patients can understand and experience traditional culture to enhance their cultural identity and self-esteem. In addition, patients can share work and exchange creative experiences with others to improve social skills. This method provides a new approach to the psychological treatment of patients with social anxiety disorder.
Aberrant DNA methylation patterns in sperm are a cause of embryonic failure and infertility, and could be a critical factor contributing to male recurrent spontaneous abortion (RSA). The purpose of this study was to reveal the potential effects of sperm DNA methylation levels in patients with male RSA. We compared sperm samples collected from fertile men and oligoasthenospermia patients. Differentially methylated sequences were identified by reduced representation bisulfite sequencing (RRBS) methods. The DNA methylation levels of the two groups were compared and qRT-PCR was used to validate the expression of genes showing differential methylation. The results indicated that no difference in base distribution was observed between the normal group and the patient group. However, the chromosome methylation in these two groups was markedly different. One site was located on chromosome 8 and measured 150 bp, while the other sites were on chromosomes 9, 10, and X and measured 135 bp, 68 bp, and 136 bp, respectively. In particular, two genes were found to be hypermethylated in these patients, one gene was DYDC2 (placed in the differential methylation region of chromosome 10), and the other gene was NXF3 (located on chromosome X). Expression levels of DYDC2 and NXF3 in the RSA group were significantly lower than those in the normal group (P < 0.05). Collectively, these results demonstrated that changes in DNA methylation might be related to male RSA. Our findings provide important information regarding the potential role of sperm DNA methylation in human development.
The Maser Monitoring Organisation is a collection of researchers exploring the use of time-variable maser emission in the investigation of astrophysical phenomena. The forward directed aspects of research primarily involve using maser emission as a tool to investigate star formation. Simultaneously, these activities have deepened knowledge of maser emission itself in addition to uncovering previously unknown maser transitions. Thus a feedback loop is created where both the knowledge of astrophysical phenomena and the utilised tools of investigation themselves are iteratively sharpened. The project goals are open-ended and constantly evolving, however, the reliance on radio observatory maser monitoring campaigns persists as the fundamental enabler of research activities within the group.
Recently, remarkable progress has been made in understanding the formation of high mass stars. Observations provided direct evidence that massive young stellar objects (MYSOs), analogously to low-mass ones, form via disk-mediated accretion accompanied by episodic accretion bursts, possibly caused by disk fragmentation. In the case of MYSOs, the mechanism theoretically provides a means to overcome radiation pressure, but in practice it is poorly studied - only three accretion bursts in MYSOs have been caught in action to date. A significant contribution to the development of the theory has been made with the study of masers, which have proven to be a powerful tool for locating “bursting” MYSOs. This overview focuses on the exceptional role that masers play in the search and study of accretion bursts in massive protostars.
Benzodiazepine receptor agonists (BZRAs) are commonly used clinically and data on their hazardous use from large populations of psychiatric patients is limited.
Aims
To assess the current status of hazardous BZRA use and related factors in Chinese out-patient psychiatric settings.
Method
The study included out-patients with at least one BZRA prescription from five psychiatric settings in east, central and west China in 2018. Demographic and prescription information were extracted from the electronic prescription database. We defined the co-occurrence of overdose and long-term use as hazardous use, and patients whose recorded diagnoses did not meet any indications approved by the Chinese Food and Drug Administration as over-indication users. Additionally, 200 hazardous users were randomly selected for follow-up interview to confirm the actual situation.
Results
Among 720 054 out-patients, 164 450 (22.8%) had at least one BZRA prescription; 55.9% of patients were prescribed over-indication and 3% were defined as hazardous users. Multilevel multivariate regression analysis with hospital as a random effect showed that factors associated with hazardous use were older age (18–64 years: β = 0.018; 95% CI 0.013–0.023; >65 years: β = 0.015; 95% CI 0.010–0.021), male (β = 0.005, 95% CI 0.003–0.007), over-indication (β = 0.013, 95% CI 0.012–0.015), more out-patient visits (β = 0.006, 95% CI 0.006–0.006) and more visits to different doctors (β = 0.007, 95% CI 0.007–0.008); 98.5% of hazardous users (197/200) could not be contacted.
Conclusions
BZRAs are commonly used and there is a relatively large proportion of over-indication users among Chinese psychiatric out-patients. However, only a small proportion of hazardous users were detected. The study highlights how to use prescription data to support improvements in clinical practice.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Based on a broad literature review of journal and book publications, governmental archives, and annals, this study comprehensively examines the special contribution of Yunnan, China, to understanding East Asian catarrhines (colobines, macaques), as well as hominoids, gibbons, hominins, and modern ethnic groups since the Later Miocene or Early Pliocene. It spatially demonstrates their relationship, particularly that between primates and archaic and modern humans. The results indicate that a specific region in Yunnan, joining with the southeast Qinghai–Tibet Plateau, the end of the eastern margin of the Himalayas, and the Hengduan Mountains (SQPMH), is globally distinctive in promoting catarrhine dispersion, radiation, speciation, and evolution in East and Southeast Asia. This area forms the gateway between West, East and Southeast. Six major archaeological sites in Yunnan (Yuanmou, Jiangchuan, Tangzigou, Xianrendong, Xiaodong, and Maludong) share the same environments and habitats with primates, indicating a strong tendency for coexistence. Yunnan also offered an exclusive refugium for plants, animals, and humans during the glaciation so that it maintains the largest numbers of ethnic groups (26) and primate species (21 of 25 species) in China. Although primates inspired significant contributions to arts, culture, social life, and medical research for humans, as in other parts of China, they have suffered greatly in recent Chinese history, particularly since the second half of the last century, resulting in the extirpation of two gibbon species in the province.
Keywords
East Asia, Yunnan, Qinghai Tibet Plateau, Mts. Hengduan, Refugium, Homo, Primates, Dispersion, Catarrhine Evolution