We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a Bayesian model for continuous-time incurred but not yet reported (IBNYR) events under four types of secondary data, and show that unreported events, such as claims, have a Poisson distribution with a reduced arrival parameter if event arrivals are Poisson distributed. Using insurance claims as an example of an IBNYR event, we apply Markov chain Monte Carlo (MCMC) to the continuous-time IBNYR claims model of Jewell using Type I and Type IV data. We illustrate the relative stability of the MCMC method versus the Gammoid approximation of Jewell by showing that the MCMC estimates approach their prior parameters, while the Gammoid approximations grow without bound for Type IV data. Moreover, this holds for any distribution that the delay parameter is assumed to follow. Our framework also allows for the computation of posterior confidence intervals for the parameters.
We propose a Poisson mixture model for count data to determine the number of groups in a Group Life insurance portfolio consisting of claim numbers or deaths. We take a non-parametric Bayesian approach to modelling this mixture distribution using a Dirichlet process prior and use reversible jump Markov chain Monte Carlo to estimate the number of components in the mixture. Unlike Haastrup, we show that the assumption of identical heterogeneity for all groups may not hold as 88% of the posterior probability is assigned to models with two or three components, and 11% to models with four or five components, whereas models with one component are never visited. Our major contribution is showing how to account for both model uncertainty and parameter estimation within a single framework.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.