We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pollen grains represent the male gametes of seed plants and their viability is critical for sexual reproduction in the plant life cycle. Palynology and viability studies have traditionally been used to address a range of botanical, ecological and geological questions, but recent work has revealed the importance of pollen viability in invasion biology as well. Here, we report an efficient visual method for assessing the viability of pollen using digital holographic microscopy (DHM). Imaging data reveal that quantitative phase information provided by the technique can be correlated with viability as indicated by the outcome of the colorimetric test. We successfully test this method on pollen grains of Lantana camara, a well-known alien invasive plant in the tropical world. Our results show that pollen viability may be assessed accurately without the usual staining procedure and suggest potential applications of the DHM methodology to a number of emerging areas in plant science.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.